Back to Creative Math Prompts          Previous prompt for middle grades          Next prompt for middle grades
 

Thought for the day: If you look through your teacher's materials (or even just look around you in the world!), you may find your own ideas for Creative Math Prompts.

Concepts: interior angles in polygons; finding angles by reasoning (instead of measuring); symmetry; properties of isosceles triangles; analyzing and extending patterns; describing patterns algebraically

 
 

Examples of noticing and wondering

I notice a pentagon in the middle of a five-pointed star.
I notice that the angles at the tips of the stars are marked.
I notice that the star is symmetrical (order-5 rotational symmetry).
I notice that the star is made of five congruent isosceles triangles attached to a pentagon.
I notice five larger isosceles triangles that include the pentagon.
I notice that I could extending the picture outward of inward as long as I want to make more pentagons and stars.

I wonder if I can calculate all of the angles is the picture.
I wonder how the different sides lengths in the picture compare (what their ratios are).
I wonder how the areas of the pentagon compare to the areas of the triangles.
I wonder how the sides lengths and areas would compare if I extended the picture outwards or inwards by making more pentagons and stars.
I wonder what the angles at the star-tips would be if I built the star from other regular polygons.
I wonder if irregular polygons can be use to make stars.

 

Notes:

This image can inspire endless observations and questions. In these notes, I focus on angles. For a more structured activity built around these ideas, see Exploration 3: Starstruck! in my book Advanced Common Core Math Explorations: Measurement and Polygons.

Students who have learned about sums of interior angles in polygons will know (or be able to figure out) that each interior angle in the pentagon measures 108°. From there, they may use many different strategies (involving vertical angles, supplementary angles, interior angles in triangles, symmetry, etc.) to determine that the angles at the star-tips are 36°. Some may notice that the sum of the star-tip angles is 36 • 5 = 180°—the same as the sum of the interior angles of a triangle, and they may wonder why this happens.

From this point, you may explore stars built by extending the sides of other regular polygons. For example, stars built from hexagons have star-tip angles of 60°, and stars built from regular octagons have star-tip angles of 90°. As the number of sides increases, the star-tip angles increase ever more slowly, gradually approaching—but never quite reaching—180°. Depending on the strategies you use and the observations you make, you can find many different formulas that calculate the angles of the star-tips from the number of sides of the regular polygon. Most often, students find a very complex formula:

 
Screen Shot 2018-08-06 at 7.15.42 AM.png
 

Sometimes, they discover simpler equivalent formulas such as 

 
Screen Shot 2018-08-06 at 7.19.48 AM.png
 

The possibilities for further questions and discoveries are nearly endless! For example, when you extend the sides of polygons that have more sides, you begin to get multiple layers of stars to explore within a single picture.
 

Back to Creative Math Prompts          Previous prompt for middle grades          Next prompt for middle grades