CAGT, October 2017

Ten Plus One:

Enhancing Depth and Complexity of Math Tasks
$74=$ \qquad tens and \qquad ones

35-18

Name the shape.

Simplify $\frac{18}{21}$.
Find the mean and median.

$$
31,27,32,65,29
$$

12×10

Measure the angle.
3.4×9.8
35% of 120
Write 0.027 in scientific notation.

Graph $3 x+2 y=5$
Solve. $\sqrt{x-3}=2 x-7$

Mathematical Depth

Traditional thinking

What do I do?
What are the steps?
How can I remember?

Deeper thinking

What do I think?
What does it mean?
How does it connect?

Deep math is creat ve math!

Goals

Learn strategies for creating deep math tasks.
Apply strategies for creating deep math tasks.
Anticipate students' thinking.
Envision classroom implementation.
Discuss additional resources.

Ten Strategies

for creating deep math tasks

5280math.com >> 5280 Math Resources >> Ten Plus One

1. Write a story.
2. Draw a picture.
3. Explain why.
4. Find another way.
5. Compare and contrast.
6. Start with the answer.
7. Remove information.
8. Solve to learn.
9. Build a pattern.
10. Ask "What if...?"

1. Write a story.

$36+7$	Write $>,<$, or $=$. $0.7 _0.58$			
Name the shape.	$6 \div \frac{2}{3}$		10×37	$13--5$
:---:	:---:		Find the slope of the line	
:---:				
through the points				
$(4,7)$ and $(6,4)$.				

Write a story.

One Strategy

for creating complex math tasks

Use more...

digits, numbers, shapes, parts, variety, steps, ideas, information, definitions, categories, relationships, etc.

Caution: The purpose is not just messy computation.

Write a story.

Use more...

2. Draw a picture. 3. Explain why.

$7+4=\ldots+5$	$6 \cdot \frac{2}{3}$
$35-18$	$6 \div \frac{2}{3}$
$\frac{2}{3}=\frac{6}{\square}$	$13--5$
$62 \div 6$	Find the hypotenuse of a right triangle having legs of length 3 cm and 4 cm.

Write a story.
 Draw a picture.
 Explain why.

Use more...

Name: \qquad date: \qquad Concept: \qquad Modeling Math Meaningfu/f

I Can write it with numbers!	I Can draw a picture of it.	

Created by. Jennifer Suh
http://mason.gmu.edu/~jsuh4/pictures/figure3.modeling\ math.JPG

https://ecdn.teacherspayteachers.com/thumbitem/Math-Lesh-Model-
Template-1418693-1409583324/original-1418693-1.jpg

4. Find another way.

Find the value of the coins. (A pitcure shows 3 dimes 6 pennies.)	8.4×1000
What fraction does this show?	18 is what percent of $40 ?$
10×37	A shirt that costs $\$ 16.50$ is on sale for 20% off. Find the sale price.
$62 \div 6$	Find the value of 3^{-2}.

Write a story.
Draw a picture.
Explain why.
Find another way.

Use more...

The Ten Plus One Process

1. Identify a math task.
2. Choose a Ten Plus One depth strategy.
3. Apply the strategy to enhance the task.
4. Adjust the complexity.
5. Anticipate students' thinking.

A Ten Plus One template

1. Identify a math task.

5. Anticipate students' thinking

2. Choose a depth strategy.

3. Apply the strategy.

4. Adjust the complexity.

1. Identify a math task.

What fraction does the shaded part show?

2. Choose a depth strategy. \#5 Compare and contrast.

3. Apply the strategy.

What do the first three pictures have in common? What do they all have in common?
4. Modify the complexity.

Use the same questions with these pictures.

5. Anticipate students' thinking.

Some students may count squares and notice that the first three pictures have six shaded squares, but the last has only four.

In order to find something that the last picture has in common with the first three, students may need to compare the shaded part to the entire rectangle and notice that three copies of the shaded part fit into the whole thing.

This may be harder for them to see in the third picture, because the pieces have to be rearranged.

The complex pictures require more imagination. In the first picture, the parts are not all connected. The third picture is more challenging because it includes parts of squares that are not as easily rearranged. Some students may notice that two copies of the triangle make a rectangle with twelve squares.

Kaplan's Icons

DEPTH \& COMPLEXITY ICONS

Based upon the work of Sandra Kaplan, USC

Math Proficiency Strands

Kilpatrick, J., Swafford, J., Findell, B. (Ed.). (2001). Adding it up: helping children learn mathematics. Washington, DC: National Academy Press.

NCTM Process Standards

Problem Solving

Reasoning and Proof

Communication

Connections

Representations

Connecting Best Practices in Math and Gifted

Conceptual
Understanding

Procedural Fluency

Adaptive Reasoning

Strategic Competence
Mathematical
Communication

Connections

Representations

Big Idea, Patterns, Trends, Different Perspectives

Rules, Ethics, Different Perspectives

Patterns and Details, Trends, Different Perspectives

Unanswered Questions, Different Perspectives, Ethics

Language of the Discipline, Rules, Different Perspectives

Across the Disciplines, Different Perspectives, Patterns

Different Perspectives, Language of the Discipline

Ten Strategies

for creating deep math tasks

5280math.com >> 5280 Math Resources >> Ten Plus One

1. Write a story.
2. Draw a picture.
3. Explain why.
4. Find another way.
5. Compare and contrast.
6. Start with the answer.
7. Remove information.
8. Solve to learn.
9. Build a pattern.
10. Ask "What if...?"

5. Compare and Contrast.

Task: What fraction is the shaded part?

5. Compare and Contrast.

Task: What fraction is the shaded part?

New task: What do the pictures haves in common?

5. Compare and Contrast.

Task: What fraction is the shaded part?

New task: What do the pictures haves in common?

New Task+: What do the pictures have in common?

Write a story. Draw a picture.
 Explain why.
 Find another way.
 Compare and contrast.

Use more...

Math adventurers are curious!

Math adventurers are risk-takers!

Math adventurers are flexible thinkers!

6. Start with the answer.

Task: Find the area.

6. Start with the answer.

Task: Find the area.

New Task: Draw some polygons that have an area of 4 square units.

6. Start with the answer.

Task: Find the area.

New Task: Draw some polygons that have an area of 4 square units.

New Task+: The area is four and the perimeter is
Draw some polygons.

Write a story. Draw a picture.
Explain why.
Find another way.
Compare and contrast.
Start with the answer.

Use more...

7. Remove information.

Task:
 $36 \div 9=$

7. Remove information.

Task:
 $36 \div 9=$

New Task:
$36 \div \ldots$

7. Remove information.

Task:
 $36 \div 9=$

New Task:

New Task+:

7. Remove information.

Task:
$\frac{9}{b}=\frac{2}{6}$

7. Remove information.

Task:

$$
\frac{9}{b}=\frac{2}{6}
$$

New Task: Find some solutions.

$$
\frac{9}{b}=\frac{c}{6}
$$

7. Remove information.

Task:

$$
\frac{9}{b}=\frac{2}{6}
$$

New Task: Find some solutions.

$$
\frac{9}{b}=\frac{c}{6}
$$

New Task+: Find ten solutions.

$$
\frac{5}{b}=\frac{c}{3}
$$

Math Adventurers want to know!

-Why (or why not)?

- What if...?
- Is that always true?
- Is that ever true?
- How do I know?
- Is there another answer?
- Is there another way to think about it?
- Can I find a pattern?
- Does that make sense?

Write a story.

Draw a picture. Explain why.
Find another way.
Compare and contrast.
Start with the answer. Remove information.

Use more...

Ten Strategies

for creating deep math tasks

5280math.com >> 5280 Math Resources >> Ten Plus One

1. Write a story.
2. Draw a picture.
3. Explain why.
4. Find another way.
5. Compare and contrast.

Choose task/strategy. Apply. Adjust complexity. Anticipate.

8. Solve to learn.

Task:
 $\frac{1}{2}+\frac{1}{3}$

8. Solve to learn.

Task:
 $\frac{1}{2}+\frac{1}{3}$

New Task:
$\frac{1}{2}+\frac{1}{3}$

Creating New Tasks

Combine strategies
Skip strategies

Be flexible

Focus on concepts

Take the long view

Mix and match.

If a strategy doesn't work, let it go.

Let the strategies inspire your creativity!

Build on ideas underlying the task.

Improve your tasks over time.

Using Your New Tasks

Step back
Allow collaboration

Expect explanations

Learn as you go

Save work samples

Let students do the thinking.

Students learn from each other.

Deep, complex ideas are worth expressing!

Refine tasks using your students' ideas!

Use student work for exemplars and assessments.

Mathematical Depth

Traditional thinking

What do I do?
What are the steps?
How can I remember?

Deeper thinking

What do I think?
What does it mean?
How does it connect?

Deep math is creat ve math!

12345

$\mathbf{.}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$\mathbf{1}$	1	$\mathbf{2}$	3	4	5	6	$\mathbf{7}$	8	$\mathbf{9}$	10
$\mathbf{2}$	$\mathbf{2}$	4	6	8	10	12	14	16	18	20
$\mathbf{3}$	3	6	$\mathbf{9}$	12	15	18	21	24	27	30
$\mathbf{4}$	4	8	12	16	20	24	28	32	36	40
$\mathbf{5}$	5	10	15	20	25	30	35	40	45	50
$\mathbf{6}$	6	12	18	24	30	36	42	48	54	60
$\mathbf{7}$	$\mathbf{7}$	14	21	28	35	42	49	56	63	70
$\mathbf{8}$	8	16	24	32	40	48	56	64	72	80
$\mathbf{9}$	$\mathbf{9}$	18	27	36	45	54	63	72	81	90
$\mathbf{1 0}$	10	20	30	40	50	60	70	80	90	100

$$
614-416
$$

$$
793-397
$$

$$
921-129
$$

532-235

$$
783-387
$$

$$
902-209
$$

Resources from 5280 Math

- Ten Plus One from the 5280 Math website
- How Open-Ended Math Tasks Keep on Giving from a middleweb.com post
- Noticing and Wondering: Pathways to Mathematical Meaning from an edcircuit.com post
- Advanced Common Core Math Explorations book series
- Problems That Never End and Projects That Never End

Resources

- Mathematical Mindsets by Jo Boaler
- Extending the Challenge in Mathematics by Linda Jensen Sheffield
- Your ideas?

Supporting each other's work

Share tasks, students' ideas, and/or classroom experiences.
jburkhart@5280math.com
http://www.5280math.com/ten-plus-one/

