NCTM Regional Conference, Phoenix 2016

Group Theory Puzzles,

 Number Properties, and Symmetry
5280math.com >> 5280 Math Resources >> Presentations >> Group Theory Puzzles

Copy this string of 15 letters (blocks).

RRRBRRBBRRBBBRR

BASIC RULES

- The order of the blocks matters.
- There are three "empty" strings that you may insert or delete at will: RRR, BBB, RBRB

RRRBRRBBRRBBBRR RRRBRRBBRRBBBRR BRRBBRRRR BRRBBR BRR RBRB BBR BRRRBRBBBR BBRR
 BBRR RBRB BBRRRBRB BBBRB
 RB

RRBRBBRRRBRBBRBRRBBBBRRBRR

What do you notice? What do you wonder?

1. Can you have a string with no blocks?
2. Will you always get the same answer no matter how you simplify a string? How do you know?
3. What is the longest string in simplest form (or is there one)?
4. How many non-equivalent simplest-form strings are there?
5. Can you apply what you learn from one simplification process to help you simplify other strings more easily?
6. Do these strings actually mean anything, or is this just a puzzle?

Some strings to simplify

*BRBR

e (the empty string)
*RBR
BB
*BRB
RR

* RBBR
already simplified (but equivalent to BRRB)
Jerry Burkhart, October 2016; 5280math.com

How can these relationships help?

BRRBBR
B BRB RBR R BBRR BB BRBR RR RB

(replace $R R$ by $B R B$ and $B B$ by $R B R$) (remove RBRB)
(insert BRBR)
(remove BBB and RRR)

Families of Equivalent Strings

Jerry Burkhart, October 2016; 5280math.com

Families of Equivalent Fractions

Jerry Burkhart, October 2016; 5280math.com

The Operation of "Joining"

* Use the symbol \circ.
* Example: R $\circ \mathrm{RRB}=\mathrm{B}$

Connections To Middle School Math

*What middle school concepts are connected to our discussion?

* Equivalence
* Commutative Property
* Associative Property
* Identities
* Inverses
* Other?
* How would you do this with kids?

A Brief Detour (1)

Whole Number
or Integer Counters

	\square								
\square	\square	\square	\boxminus	\square	\square	\square	\square	\square	\square
\square									
\square	\square	\square	-	\square	\square	\square	θ	\square	$\square \square$

Joining represents multiplication.

A Brief Detour (2)

Prime Building Blocks

Is joining associative for the RB system?

YES!

* Strings that look the same are equivalent regardless of the process by which they are built (a pair at a time).
* Example: Building RRB
- R
R
B
R R
B
* RR
B
R RB
* RRB
RRB

Is joining commutative for the RB system?

NO!

Example:
$R \circ B \neq B \circ R$
$R \circ B=R B$ and $B \circ R=B R$

Does joining have an identity in the RB system?

YES!

The identity is e.

Inverses in the RB system

* The inverse of R is RR. (When you join them, you get e.)
* The inverse of B is \qquad ?

BB

* The inverse of RB is \qquad ?

RB

*The inverse of BR is \qquad ?

BR

More inverses

* The inverse of RRB is \qquad ?

BBR

* The inverse of RBB is \qquad ?
BRR
* The inverse of RBBR is \qquad ?

RBBR

* The inverse of e is \qquad ?

Groups

A group consists of a set of objects (members) with an operation between pairs of the objects satisfying:

* The operation is associative.
* There is a (single) identity.
* Every member has an inverse.

Note: There is actually one more condition that we will take for granted for the moment. We will return to it soon.

Back to our Questions

1. Can you have a string with no blocks?
2. Will you always get the same answer no matter how you simplify a string? How do you know?
3. What is the longest string in simplest form (or is there one)?
4. How many non-equivalent simplest-form strings are there?
5. Can you apply what you learn from one simplification process to help you simplify other strings more easily?
6. Do these strings actually mean anything, or is this just a puzzle?

How many string families are there?

* Hint: The longest simplified string is 4 letters long.

Strings to be tested

- e
* R B
* RR RB BB BR
* RRR RRB RBR RBB BBB BBR BRB BRR
* RRRR RRRB RRBR RRBB RBRR RBRB RBBR RBBB

BBBB BBBR BBRB BBRR BRBB BRBR BRRB BRRR

The 12 Families of Strings

e $\quad \mathrm{R} B \quad \mathrm{RR} \mathrm{RB} \mathrm{BB} \mathrm{BR} \quad \mathrm{RRB}$ RBB BBR BRR RBBR

How do we know that every longer string can be simplified to one of these?

Every string of four except RBBR and BRRB can be simplified. RRBBR BRBBR RBBRR RBBRB RRBBR BRBBR RBBRR RBBRB

BRRB works similarly.

Renaming the Group Members

$$
e=\quad \mathrm{V} 1=\mathrm{RB} \quad \mathrm{~V} 2=\mathrm{BR} \quad \mathrm{~V} 3=\mathrm{RBBR}
$$

$$
\mathrm{A} 1=\mathrm{R} \quad \mathrm{~B} 1=\mathrm{BRR} \quad \mathrm{C} 1=\mathrm{RRB} \quad \mathrm{D} 1=\mathrm{BB}
$$

$$
\mathrm{A} 2=\mathrm{RR} \quad \mathrm{~B} 2=\mathrm{RBB} \quad \mathrm{C} 2=\mathrm{BRR} \quad \mathrm{D} 2=\mathrm{B}
$$

Our			$\mathrm{V}_{1} \mathrm{~V}$	$\mathrm{V}_{2} \mathrm{~V}_{3}$	$\mathrm{A}_{1} \mathrm{~B}$	$\mathrm{B}_{1} \mathrm{C}$	$\mathrm{C}_{1} \mathrm{D}_{1}$	A_{2}	B	$\mathrm{C}_{2} \mathrm{D}_{2}$
	e									
Group	V_{1}									
Table	V_{2}									
	V_{3}									
	A_{1}									
	B_{1}									
	C_{1}									
	D_{1}									
	A_{2}									
	B_{2}									
	C_{2}									
	D_{2}									

A4 Group Completed Table

	e $\mathrm{V}_{1} \mathrm{~V}_{2} \mid \mathrm{V}_{3}$	$\mathrm{A}_{1} \mid \mathrm{B}_{1} \mathrm{C}_{1}$	$\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2} \mathrm{D}_{2}$
e	e $\mathrm{V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{3}$	$\mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1} \mathrm{D}$	$\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2} \mathrm{D}_{2}$
	$\mathrm{V}_{1} \mathrm{e} \mathrm{V}_{3} \mathrm{~V}_{2}$	$\mathrm{D}_{1} \mathrm{C}_{1} \mathrm{~B}_{1}$	$\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{~A}_{2} \mathrm{~B}_{2}$
	$\mathrm{V}_{2} \mathrm{~V}_{3}$ e V^{1}	$\mathrm{B}_{1} \mathrm{~A}_{1} \mathrm{D}_{1} \mathrm{C}$	$\mathrm{D}_{2} \mathrm{C}_{2} \mathrm{~B}_{2} \mathrm{~A}_{2}$
V_{3}	$V_{3} V_{2} V_{1}$ e	$\mathrm{C}_{1} \mathrm{D}_{1} \mathrm{~A}_{1}$	$\mathrm{B}_{2} \mathrm{~A}_{2} \mathrm{D}_{2} \mathrm{C}_{2}$
A_{1}	$\mathrm{A}_{1} \mathrm{C}_{1} \mathrm{D}_{1} \mathrm{~B}$	$\mathrm{A}_{2} \mathrm{C}_{2} \mathrm{D}_{2} \mathrm{~B}$	e $\mathrm{V}_{2} \mathrm{~V}_{3} \mathrm{~V}_{1}$
B	$\mathrm{B}_{1} \mathrm{D}_{1} \mathrm{C}_{1} \mathrm{~A}$	$\mathrm{D}_{2} \mathrm{~B}_{2} \mathrm{~A}_{2}$	$\mathrm{V}_{2} \mathrm{e} \mathrm{V}_{1} \mathrm{~V}_{3}$
C	$\mathrm{C}_{1} \mathrm{~A}_{1} \mathrm{~B}_{1} \mathrm{D}_{1}$	$\mathrm{B}_{2} \mathrm{D}_{2} \mathrm{C}_{2}$	$\mathrm{V}_{3} \mathrm{~V}_{1} \mathrm{e} \mathrm{V}_{2}$
D_{1}	$\mathrm{D}_{1} \mathrm{~B}_{1} \mathrm{~A}_{1} \mathrm{C}_{1}$	$\mathrm{C}_{2} \mathrm{~A}_{2} \mathrm{~B}_{2} \mathrm{D}$	$\mathrm{V}_{1} \mathrm{~V}_{3} \mathrm{~V}_{2} \mathrm{e}$
A_{2}	$\mathrm{A}_{2} \mathrm{D}_{2} \mathrm{~B}_{2} \mathrm{C}_{2}$	e $V_{3} V_{1} V^{2}$	$\mathrm{A}_{1} \mathrm{D}_{1} \mathrm{~B}_{1} \mathrm{C}_{1}$
	$\mathrm{B}_{2} \mathrm{C}_{2} \mathrm{~A}_{2} \mathrm{D}_{2}$	$\mathrm{V}_{3} \mathrm{e} \mathrm{V}_{2} \mathrm{~V}$	$\mathrm{C}_{1} \mathrm{~B}_{1} \mathrm{D}_{1} \mathrm{~A}_{1}$
	$\mathrm{C}_{2} \mathrm{~B}_{2} \mathrm{D}_{2} \mathrm{~A}_{2}$	$\mathrm{V}_{1} \mathrm{~V}_{2} \mathrm{e} \mathrm{V}^{2}$	$\mathrm{D}_{1} \mathrm{~A}_{1} \mathrm{C}_{1} \mathrm{~B}_{1}$
		$\mathrm{V}_{2} \mathrm{~V}_{1} \mathrm{~V}_{3}$	$\mathrm{B}_{1} \mathrm{C}_{1} \mathrm{~A}_{1} \mathrm{D}_{1}$

Explore!

Test these on your tetrahedron:

* $\mathrm{RBRB}=\mathrm{BRBR}=e$
* $\mathrm{RBR}=\mathrm{BB}$
* $\mathrm{BRB}=\mathrm{RR}$
* $\mathrm{RBBR}=\mathrm{BRRB}$
* Calculations of your choice from the table

RRRBRRBBRRBBBRR RRRBRRBBRRBBBRR BRRBBRRRR BRRBBR BRR RBRB BBR BRRRBRBBBR BBRR
 BBRR RBRB BBRRRBRB BBBRB
 RB

Did you simplify this?

RRBRBBRRRBRBBRBRRBBBBRRBRR

B

Permutations of rgby

rgby rgyb rbgy rbyg rygb rybg grby gryb gbry gbyr gyrb gybr brgy bryg bgry bgyr byrg bygr yrgb yrbg ygrb ygbr ybrg ybgr

Even permutations of rgby

rgby rgyb rbgy rbyg rygb rybg
grby gryb gbry gbyr gyrb gybr
brgy bryg bgry bgyr byrg bygr
yrgb yrbg ygrb ygbr ybrg ybgr

Correlation with R and B

e rgyb rbgy RR R rybg
grby RBBR RRB gbyr gyrb RBB
BBR bryg bgry BB RB bygr
yrgb BRR B ygbr ybrg BR

Solving Equations

$$
\begin{aligned}
& x+7=10 \\
& (x+7)+-7=10+-7
\end{aligned}
$$

$$
x \cdot 5=30
$$

$$
(x \cdot 5) \cdot \frac{1}{5}=30 \cdot \frac{1}{5}
$$

$$
x \cdot\left(5 \cdot \frac{1}{5}\right)=6
$$

$$
x \cdot 1=6
$$

$$
x=6
$$

Solving Equations (2)

$$
\begin{aligned}
& x \circ \mathrm{~B}_{2}=\mathrm{V}_{3} \\
& \left(x \circ \mathrm{~B}_{2}\right) \circ \mathrm{B}_{1}=\mathrm{V}_{3} \circ \mathrm{~B}_{1} \\
& x \circ\left(\mathrm{~B}_{2} \circ \mathrm{~B}_{1}\right)=\mathrm{D}_{1} \\
& x \circ e=\mathrm{D}_{1} \\
& x=\mathrm{D}_{1}
\end{aligned}
$$

What next?

- Create new groups from other sets of empty strings.
- RRR
- RRR, BB, RBRB
- RB, BR
- Makes tables for your groups.
- Look for patterns in the groups and their tables.
- Draw examples of geometric figures that have these groups.
- Look for subgroups or factor groups within your groups.

What next?

* How can you view each string as representing a single rotation? What is the axis of rotation? How many degrees does it turn through?
* Start with geometric shapes and find the groups that correspond to them.
Example: Find the group for each letter of the alphabet. (Upper case works best.)

What next?

- Research connections between groups and Rubik's cube.
- Watch some related videos.
- A TED Talk by Marcus du Sautoy about groups and symmetry: https://www.ted.com/talks/ marcus_du_sautoy_symmetry_reality_s_riddle
- Playing a Rubik's Cube (a TedEd Talk)
https://www.youtube.com/watch?v=FW2Hvs5WaRY
See 5280math.com for the links and for more websites.

Thank you!

Jerry Burkhart
5280math.com
jburkhart@5280math.com

