FOUR TASKS Choose one!

$$A-4=6-B$$

What can you say about A and B? How do you know?

Draw at least six triangles that have an area of 5 square units.

Draw a _____ whose angles are congruent but whose sides are not congruent.

Create a story and a diagram to illustrate the meaning of $3 \div \frac{1}{2}$.

Choose a task. Decide on an appropriate grade level. Approach it as a student at that grade level.

- What are the instructional goals of the task?
- How does the task extend math standards?
- Is the task deep? Is it complex? Why or why not?
- How would you use the task in your classroom?

NAGC Phoenix, 2015

Extending Math Standards for Gifted Students K-8

Presenter: Jerry Burkhart

5280 Math Education jerry@themathroom.org

Goals

- Explore examples of deep mathematical tasks.
- * Connect the tasks to gifted research and to the Common Core Math Content and Practice Standards.
- * Discuss the meaning and significance of deep math tasks and instruction for gifted students.
- * Identify principles and techniques for using CCSS-M to enhance learning opportunities for gifted students.
- * Apply the techniques to practice generating deep and complex math tasks.

Depth In Math Instruction

for Gifted Students

- * Why do we need it?
- * How do we achieve it?
- * What resources and strategies support it?

Language as a Window into Depth (1)

Standards Retained	Standards Omitted
Divide	Estimate
Calculate (+ - x ÷)	Assess reasonableness
Recognize —> write	
Represented	
Interpret —> decide (form of remainder)	
Select (a form of a number)	
Consider context	
Solve problem —> story problem	
Knowledge of place value	
Use various strategies	
Relationships	
Context	
Reasonableness	

Language as a Window into Depth (2)

Standards Retained	Standards Omitted
Order (verb) Locate on number line	Read/Write (place value) Place value Find (0.1 more/less; 0.01 more/less) Recognize Generate Equivalent expressions Contexts Round

Language as a Window into Depth (3)

Standards Retained	Standards Omitted
Add/subtract Add/subtract/multiply/divide Solve problems —> find answers to story problems	Model (verb) A variety of representations Estimate Assess reasonableness

Kaplan's Icons

DEPTH & COMPLEXITY ICONS

Based upon the work of Sandra Kaplan, USC

NCTM Process Standards

Problem Solving

Develop, apply, and verify your own strategies to answer questions.

Reasoning and Proof

Make and test predictions. Analyze and extend patterns. Justify conclusions.

Communication

Organize, record, and present mathematical ideas clearly (orally and in writing).

* Connections

Recognize relationships among mathematical ideas and between math and other disciplines.

* Representations

Model math concepts with words, graphs, tables, symbols, pictures, manipulatives, etc.

Math Proficiency Strands

Kilpatrick, J., Swafford, J., Findell, B. (Ed.). (2001). Adding it up: helping children learn mathematics. Washington, DC: National Academy Press.

CCSS - Mathematical Practice

- 1. Make sense of problems and persevere in solving them.
- 2. Reason abstractly and quantitatively.
- 3. Construct viable arguments and critique the reasoning of others.
- 4. Model with mathematics.
- 5. Use appropriate tools strategically.
- 6. Attend to precision.
- 7. Look for and make use of structure.
- 8. Look for and express regularity in repeated reasoning.

Connecting Kaplan to Best Practices in Math

Conceptual Understanding	Big Idea , Patterns, Trends, Different Perspectives
Procedural Fluency	Rules, Ethics, Different Perspectives
Adaptive Reasoning	Patterns and Details, Trends, Different Perspectives
Strategic Competence	Unanswered Questions, Different Perspectives, Ethics
Mathematical Communication	Language of the Discipline, Rules, Different Perspectives
Connections	Across the Disciplines, Different Perspectives, Patterns
Representations	Different Perspectives, Language of the Discipline

Extending the Common Core Math Standards

★ Increase Depth

- Focus on the *Practice* standards
- Attend to language in content standards (understand, represent, predict, interpret,...)
- Use the 10 Strategies for Increasing Depth

★ Increase complexity

- Use the *Strategy for Increasing Complexity* (more...)
- Provide options for level of complexity
- Integrate with the 10 Strategies for Depth

★ Increase breadth

• Explore outside content standards (practical, recreational, interdisciplinary, advanced)

Math Instruction for Gifted Students

10 Strategies

for Increasing Depth of Math Tasks

- 1. Write a Story.
- 2. Draw a Picture.
- 3. Find another way.
- 4. Explain why.
- 5. Compare and contrast.

- 6. Start with the answer.
- 7. Remove information.
- 8. Solve to learn.
- 9. Build a pattern.
- 10. Ask "What If...?"

1 Strategy

for Increasing the Complexity of Math Tasks

Use more...

- digits.
- numbers.
- shapes.
- parts.
- steps.
- definitions.
- categories.
- relationships.

Original Task:
$$6 \div \frac{2}{3}$$

- Strategy 1: Write a story.
- Strategy 2: Draw a picture.
- Strategy 3: Explain why.

New Task: Write a story problem for $6 \div \frac{2}{3}$. Draw a picture, and use it show the answer and justify it.

Original Task:
$$6 \div \frac{2}{3}$$

Strategy 4: Find another way.

New Task: Find another way to calculate $6 \div \frac{2}{3}$.

Original Task:
$$6 \div \frac{2}{3}$$

Strategy 5: Compare and contrast.

New Task: Create other examples of division equations for which the quotient is greater than the dividend. What do your examples have in common? How are they different?

Original Task:
$$6 \div \frac{2}{3}$$

- * Strategy 6: Start with the answer.
- * Strategy 9: Create a pattern.

New Task: Write at least four equations in the form

whole number \div fraction = 9

Describe any patterns that you see.

Original Task:
$$6 \div \frac{2}{3}$$

* Strategy 7: Remove information.

New Task:
$$6 \div \frac{3}{3}$$

Original Task:
$$6 \div \frac{2}{3}$$

- Strategy 8: Solve to learn.
- * Strategy 3: Explain why.

New Task: Find the value of $6 \div \frac{2}{3}$. Explain why your answer makes sense.

(Assign the task before teaching a procedure for dividing fractions.)

Original Task:
$$6 \div \frac{2}{3}$$

Strategy 10: Ask "What if...?"

New Task: What happens to the value of $6 \div \frac{2}{3}$ if you

- multiply the dividend by 3?
- multiply the divisor by 3?
- multiply the dividend and the divisor by 3?
- multiply the ______ by _____? (Strategy 7)

Applying the Strategy for Complexity

Original Task:
$$6 \div \frac{2}{3}$$

Strategy for Complexity: Use more.

- * Increase the size of the 6, 2, or 3.
- * Make the numerator a number that is not a factor of 6.
- * Make the dividend a fraction.

Sample Tasks to Modify

- * Round (83) to the nearest ten.
- * Identify the (parallelogram) in the pictures.
- * Simplify $(\frac{6}{15})$.
- * Find the area of the (triangle).
- * Find the prime factorization of (56).
- * Find the value of $(6 \cdot \frac{2}{3})$.
- * Find the value: $(\frac{3\times10^1}{5\times10^{-2}})$.

Resources

- Principles and Standards for School Mathematics. Reston, Va.: NCTM, 2000.
- *Helping Children Learn Mathematics*, by the National Research Council, 2000.
- Extending the Challenge in Mathematics, by Linda Sheffield. Corwin Press, 2003.
- *Advanced Common Core Math Explorations* series, by Jerry Burkhart. Prufrock Press, 2014 2015
- Good Questions: Great Ways to Differentiate Math Instruction, by Marian Small. Teacher's College Press, 2012.

Thank you!

Jerry Burkhart

5280 Math Education LLC

email: jerry@themathroom.org

Advanced Common Core Math Explorations books:

http://www.prufrock.com