FOUR TASKS Choose one!

$$
A-4=6-B
$$

What can you say about A and B? How do you know?

Draw a \qquad whose angles are congruent but whose sides are not congruent.

Draw at least six triangles that have an area of 5 square units.

Create a story and a diagram to illustrate the meaning

$$
\text { of } 3 \div \frac{1}{2}
$$

Choose a task. Decide on an appropriate grade level. Approach it as a student at that grade level.
-What are the instructional goals of the task?
-How does the task extend math standards?
-Is the task deep? Is it complex? Why or why not?
-How would you use the task in your classroom?

Extending Math Standards for Gifted Students K-8

Presenter: Jerry Burkhart

5280 Math Education jerry@themathroom.org

Goals

* Explore examples of deep mathematical tasks.
* Connect the tasks to gifted research and to the Common Core Math Content and Practice Standards.
* Discuss the meaning and significance of deep math tasks and instruction for gifted students.
* Identify principles and techniques for using CCSS-M to enhance learning opportunities for gifted students.
* Apply the techniques to practice generating deep and complex math tasks.

Depth In Math Instruction for Gifted Students

* Why do we need it?
* How do we achieve it?
* What resources and strategies support it?

Language as a Window into Depth (1)

Standards Retained

Divide
Calculate ($+-\mathrm{x} \div$)
Recognize —> write
Represented
Interpret \longrightarrow decide (form of remainder)
Select (a form of a number)
Consider context
Solve problem \longrightarrow story problem
Knowledge of place value
Use various strategies
Relationships
Context
Reasonableness

Standards Omitted

Estimate
Assess reasonableness

Language as a Window into Depth (2)

Standards Retained

Order (verb)
Locate on number line

Standards Omitted

Read / Write (place value)
Place value
Find (0.1 more / less; 0.01 more / less...)
Recognize
Generate
Equivalent expressions
Contexts
Round

Language as a Window into Depth (3)

Standards Retained

Standards Omitted

Add/subtract
Add/subtract/multiply/divide
Solve problems \longrightarrow find answers to story
problems

Model (verb)
A variety of representations
Estimate
Assess reasonableness

Kaplan's Icons

DEPTH \& COMPLEXITY ICONS

Based upon the work of Sandra Kaplan, USC

NCTM Process Standards

* Problem Solving
* Develop, apply, and verify your own strategies to answer questions.
* Reasoning and Proof
* Make and test predictions. Analyze and extend patterns. Justify conclusions.
* Communication
* Organize, record, and present mathematical ideas clearly (orally and in writing).
* Connections
* Recognize relationships among mathematical ideas and between math and other disciplines.
* Representations
* Model math concepts with words, graphs, tables, symbols, pictures, manipulatives, etc.

Math Proficiency Strands

Kilpatrick, J., Swafford, J., Findell, B. (Ed.). (2001). Adding it up: helping children learn mathematics. Washington, DC: National Academy Press.

CCSS - Mathematical Practice

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

Connecting Kaplan to Best Practices in Math

Conceptual
Understanding
Procedural Fluency

Adaptive Reasoning

Strategic Competence
Mathematical
Communication
Connections

Representations

Big Idea, Patterns, Trends, Different Perspectives

Rules, Ethics, Different Perspectives

Patterns and Details, Trends, Different Perspectives

Unanswered Questions, Different Perspectives, Ethics

Language of the Discipline, Rules, Different Perspectives

Across the Disciplines, Different Perspectives, Patterns

Different Perspectives, Language of the Discipline

Extending the Common Core Math Standards

\star Increase Depth

- Focus on the Practice standards
- Attend to language in content standards (understand, represent, predict, interpret,...)
- Use the 10 Strategies for Increasing Depth
\star Increase complexity
- Use the Strategy for Increasing Complexity (more...)
- Provide options for level of complexity
- Integrate with the 10 Strategies for Depth
\star Increase breadth
- Explore outside content standards (practical, recreational, interdisciplinary, advanced)

Math Instruction for Gifted Students

10 Strategies

for Increasing Depth of Math Tasks

1. Write a Story.
2. Draw a Picture.
3. Find another way.
4. Explain why.
5. Compare and contrast.
6. Start with the answer.
7. Remove information.
8. Solve to learn.
9. Build a pattern.
10. Ask "What If...?"

1 Strategy
 for Increasing the Complexity of Math Tasks

Use more...

- digits.
- numbers.
- shapes.
- parts.
- steps.
- definitions.
- categories.
- relationships.

Applying the 10 Strategies for Depth

Original Task: $6 \div \frac{2}{3}$

* Strategy 1: Write a story.
* Strategy 2: Draw a picture.
* Strategy 3: Explain why.

New Task: Write a story problem for $6 \div \frac{2}{3}$. Draw a picture, and use it show the answer and justify it.

Applying the 10 Strategies for Depth

Original Task: $6 \div \frac{2}{3}$

* Strategy 4: Find another way.

New Task: Find another way to calculate $6 \div \frac{2}{3}$.

Applying the 10 Strategies for Depth

Original Task: $6 \div \frac{2}{3}$

* Strategy 5: Compare and contrast.

New Task: Create other examples of division equations for which the quotient is greater than the dividend. What do your examples have in common? How are they different?

Applying the 10 Strategies for Depth

Original Task: $6 \div \frac{2}{3}$

* Strategy 6: Start with the answer.
- Strategy 9: Create a pattern.

New Task: Write at least four equations in the form

$$
\text { whole number } \div \text { fraction }=9
$$

Describe any patterns that you see.

Applying the 10 Strategies for Depth

Original Task: $6 \div \frac{2}{3}$

* Strategy 7: Remove information.

New Task: $6 \div \frac{\square}{3}$

Applying the 10 Strategies for Depth

Original Task: $6 \div \frac{2}{3}$

* Strategy 8: Solve to learn.
* Strategy 3: Explain why.

New Task: Find the value of $6 \div \frac{2}{3}$. Explain why your answer makes sense.
(Assign the task before teaching a procedure for dividing fractions.)

Applying the 10 Strategies for Depth

Original Task: $6 \div \frac{2}{3}$

* Strategy 10: Ask "What if...?"

New Task: What happens to the value of $6 \div \frac{2}{3}$ if you

- multiply the dividend by 3 ?
- multiply the divisor by 3 ?
- multiply the dividend and the divisor by 3 ?
- multiply the \qquad by \qquad ? (Strategy 7)

Applying the Strategy for Complexity

$$
\text { Original Task: } 6 \div \frac{2}{3}
$$

Strategy for Complexity: Use more.

- Increase the size of the 6,2 , or 3 .
* Make the numerator a number that is not a factor of 6 .
* Make the dividend a fraction.

Sample Tasks to Modify

* Round (83) to the nearest ten.
* Identify the (parallelogram) in the pictures.
- Simplify $\left(\frac{6}{15}\right)$.
* Find the area of the (triangle).
* Find the prime factorization of (56).
* Find the value of $\left(6 \cdot \frac{2}{3}\right)$.
* Find the value: $\left(\frac{3 \times 10^{1}}{5 \times 10^{-2}}\right)$.

Resources

- Principles and Standards for School Mathematics. Reston, Va.: NCTM, 2000.
- Helping Children Learn Mathematics, by the National Research Council, 2000.
- Extending the Challenge in Mathematics, by Linda Sheffield. Corwin Press, 2003.
- Advanced Common Core Math Explorations series, by Jerry Burkhart. Prufrock Press, 2014 - 2015
- Good Questions: Great Ways to Differentiate Math Instruction, by Marian Small. Teacher's College Press, 2012.

Thank you!

Jerry Burkhart

5280 Math Education LLC
email: jerry@themathroom.org

Advanced Common Core Math Explorations books:
http: / / www.prufrock.com

