Building Numbers from Primes

Jerry Burkhart 5280math.com

@5280math

5280math.com >>
5280 Math Resources >>
Math Building Blocks

What do you notice?

What do you wonder?

Introducing the Blocks: Method 1

A Color-free Version

5280math.com >> 5280 Math Resources >> Math Building Blocks: More Resources

Introducing the Blocks: Method 2

Give students enough colored blocks to build 1 - 20. Each color represents a different number. Joining blocks stands for multiplication.

- Build the numbers 2 20 in order.
- Use a new color only when necessary.

5280math.com >> 5280 Math Resources >> Math Building Blocks: More Resources

https://www.nctm.org/Publications/Mathematics-Teaching-in-Middle-School/2009/Vol15/Issue3/Building-Numbers-from-Primes/

1	2	3	4 2 2	5 5
6	7	8 2 2 2	9	10
11 11	12 3 2 2	13 13	14 2 7	15 3 5
16 2 2 2 2	17 17	18 3 2 3	19 19	20 5 2 2

Introducing the Building Blocks model Method 3

Math Building Blocks

by Jerry Burkhart

Introducing the Building Blocks model Method 3

Building Blocks

modified Sieve of Eratosthenes with numbers

by Jerry Burkhart

Why is the first cell blank?

What can you say about blocks in consecutively numbered cells?

If a number has a factor of 4, then...

If a number has a factor of 4, then...

If a number does not have a factor of 3, then...

The Next Step

Build the numbers.

101 128 196 201 999 1000 1001 etc.

What strategies might students use?

- 1. Test one color (prime number) at a time.
- 2. Find one or more factors that appear on the grid.
- 3. Use a factor tree.

An Extension

Multiplication and Division

6 •	15
-----	----

 $21 \div 3$

 $98 \div 14$

 $64 \div 32$

 $5 \div 5$

 $210 \div 42$

Multiplication Examples

Division Examples

Exponent Examples

2¹ 2

$$2^6 \div 2^5 = 2^{6-5}$$

 $64 \div 32 = 2$

Factors

Is ____ a factor of this number?

2 6 22 7 8 16 44 35 27 36 1210

Finding all factors of a number

Factors in Exponential Form

$$2^3 \cdot 3^1$$

Factors

$$2^2 \cdot 3^0$$

$$2^1 \cdot 3^1$$

$$2^1 \cdot 3^0$$

$$2^2 \cdot 3^1$$

$$2^3 \cdot 3^0$$

$$2^0 \cdot 3^1$$

$$2^0 \cdot 3^0$$

$$2^3 \cdot 3^1$$

Counting Factors

2 ⁰ · 3 ⁰	$2^1 \cdot 3^0$	$2^2 \cdot 3^0$	2 ³ · 3 ⁰
1	2	2 2	2 2 2
2 ⁰ · 3 ¹	2 ¹ · 3 ¹	2 ² · 3 ¹	$2^3 \cdot 3^1$
3	3 2	3 2 2	3 2 2 2
3	6	12	24

Counting Factors: a formula

$$n = p^x \cdot q^y$$

p and q are distinct prime numbers.

N represents the number of factors of n.

$$N = (x+1) \cdot (y+1)$$

Greatest Common Factor

GCF with Exponents

GCF: 3¹.7¹

$$2^{1} \cdot 5^{1} \cdot 17^{2} \quad 7^{3} \cdot 11^{1} \cdot 19^{1}$$

GCF: 1

Simplifying Fractions

 429

 14586

 2 3 1113 17

 2 17

 3 429

 2 17

Multiples

Multiples in Exponential Form

 $2^3 \cdot 3^1$

 $2^2 \cdot 3^2$

3222

$$2^4 \cdot 3^1$$

 $2^2 \cdot 3^1 \cdot 5^1$

 $2^3 \cdot 3^2$

Least Common Multiple

LCM Strategy 1

The numbers

126

273

1. Choose a factor.

273

2. **Find** the missing blocks.

273

6

32

3. Join the blocks.

LCM: $273 \cdot 6 = 1638$

LCM Strategy 2

The numbers

126

273

13 7 3 1. **Join** the blocks.

$$126 \cdot 273 = 34398$$

2. Remove the common blocks.

$$34398 \div 21$$

The answer

LCM: 1638

LCM Strategy 3

The numbers

126

273

13

1. Count same-colored blocks.

2. **Choose** the greater number.

3. Join the blocks.

LCM: 2.9.7.13 = 1638

LCM with Exponents

$$2^{1} \cdot 5^{1} \cdot 17^{2} \quad 7^{3} \cdot 11^{1} \cdot 19^{1}$$

LCM: 2¹·5¹·7³·11¹·17²·19¹

11	17	17	19
7	7	7	
2	5		,

Connecting GCF and LCM

273

GCF: 21

LCM: 1638

Connecting GCF and LCM with Exponents

GCF: 31.71

 $3^{1} \cdot 7^{1} \cdot 13^{1}$

LCM: 2¹·3²·7¹·13¹

GCF and LCM with Variables

GCF: yz

GCF: 1

LCM: xaz³cb²d

Squaring a number

45

 $3^2 \cdot 5^1$

 45^{2}

 $3^4 \cdot 5^2$

How can we recognize square numbers from their block diagrams?

How can we recognize square numbers from the exponents in their prime factorizations?

- Even number of blocks of each color
- Exponents are all even

What is the smallest square number greater than 63?

Strategy: Join the fewest blocks so that there is an even number of blocks of each color.

Square Roots

324

 $2^2 \cdot 3^4$

 $\sqrt{324}$

 $2^{1} \cdot 3^{2}$

What happens to the blocks when you form the square root of a number?

What happens to the exponents when you form the square root of a number?

- Half as many blocks of each color
- Exponents are halved

What does this represent?

$$7^{\frac{1}{2}}$$

$$\sqrt{7} \cdot \sqrt{7}$$

What property is illustrated?

Simplifying Radicals

How many ways can you name this?

$$7\sqrt{7} \qquad 7 \cdot 7^{\frac{1}{2}} \qquad 7^{1\frac{1}{2}} \qquad \sqrt{343}$$

$$343^{0.5} \qquad (7^{\frac{1}{2}})^3 \qquad 49^{\frac{1}{2}} \cdot 7^{\frac{1}{2}} \qquad (49 \cdot 7)^{\frac{1}{2}}$$

$$(7^3)^{0.5} \qquad \sqrt{7^3} \qquad 49 \div \sqrt{7} \qquad 117,649^{\frac{1}{4}}$$

$$49^{\frac{3}{4}} \qquad ((7^2)^{0.25})^3 \qquad (7^{\frac{1}{4}})^6 \qquad \sim 18.520259...$$

Some other pictures to name...

Counters and Blocks

Counters

Joining represents addition: 3 + 2 = 5

Building Blocks

Joining represents multiplication:

$$6 \cdot 14 = 84$$

Inverses and Identities

What happens when you join additive **inverses** (opposites)?

What happens when you join multiplicative **inverses** (reciprocals)?

In both cases, you get the **identity**, which is "no counters" or "no blocks."

$$1 + -1 = 0$$

$$2 \cdot \frac{1}{2} = 1$$

More Inverses

You can use 1 and and its opposite to form other inverses.

You can use primes and their reciprocals to form other inverses.

$$3 + -3 = 0$$

$$10 \cdot \frac{1}{10} = 1$$

Addition and Multiplication

You can use opposite pairs to help you add.

You can use reciprocal pairs to help you multiply.

$$4 + -2 = 2$$

$$3 \cdot \frac{1}{6} = \frac{1}{2}$$

No new rules are needed!

Forming Other Fractions

$$\frac{1}{3}$$

$$2 \cdot \frac{1}{3} = \frac{2}{3}$$

$$\begin{array}{c|c} 5 \\ \frac{1}{2} & \frac{1}{3} \end{array}$$

$$5 \cdot \frac{1}{6} = \frac{5}{6}$$

$$\frac{6}{15}$$

$$\frac{1}{3}$$
 $\frac{1}{5}$ $\frac{1}{5}$ $\frac{2}{3}$

$$6 \cdot \frac{1}{15} = \frac{6}{15}$$

Using Inverses to Calculate

3

Using Inverses to Calculate (2)

Convenient Pairs of Inverses

3 - -2 (start with 3)

 $2 \div \frac{1}{3}$ (start with 2)

join reciprocal pair

remove $\frac{1}{3}$

$$3 + 2$$

2 • 3

A Rule for Multiplying Fractions

A Rule for Dividing Fractions

$$\frac{2}{7} \div \frac{3}{5}$$

1.

 $\frac{2}{\frac{1}{7}}$

begin with $\frac{2}{7}$

2

join reciprocal pairs

3.

remove $\frac{3}{5}$

4.

$$\frac{2}{\frac{1}{7}}$$
 $\frac{1}{3}$

$$\frac{2}{7} \cdot \frac{5}{3}$$

Number Theorems (1)

Hypothesis: a|b and b|c True or false? Conclusion: a|c

True!

Number Theorems (2)

Determine if each conclusion is True or False. Justify your answer with a block diagram. a, b, c, d, and n are natural numbers.

Hypothesis: a is a factor of b and b is a factor of a.

Conclusion: a = b

Hypothesis: a is a factor of b and c is a factor of d.

Conclusion: a • c is a factor of b • d.

Hypothesis: a is not factor of b.

Conclusion: n • a is not a factor of b.

Number Theorems (3)

Hypothesis: n • a is a factor of b

Conclusion: a is a factor of b.

What is the connection to the previous statement?

Hypothesis: a and b are factors of c and GCF(a, b) = 1

Conclusion: a • b is a factor of c.

Why is the GCF condition needed?

Hypothesis: a is a factor of b \bullet c and GCF(a, b) = 1

Conclusion: a is a factor of c.

Why is the GCF condition needed?

Number Theorems (4)

Statement: GCF(a, b) is a factor of LCM(a, b).

Hypothesis: GCF(a, b) = n

Conclusion: GCF(a/n, b/n) = 1

Hypothesis:GCF(a, b) = 1

Conclusion: $GCF(a^n, b^n) = 1$

Resources

5280math.com >> 5280 Math Resources >> Math Building Blocks

Building Numbers from Primes (October 2009) by Jerry Burkhart *Mathematics Teaching in the Middle School*, 15, 156 – 167

Advanced Common Core Math Explorations: Factors and Multiples by Jerry Burkhart, Prufrock Press, 2014

copies of slides
5280math.com >> 5280 Math Resources >>
Presentations

Jerry Burkhart 5280math.com jburkhart@5280math.com @5280math

