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Deep	Algebra	Projects:	Pre-algebra/Algebra	1	
Stories	That	Formulas	Tell	

	
	

Topics		
• Interpreting	algebraic	formulas	
• Interpreting	and	calculating	with	negative	numbers	
• Evaluating	algebraic	expressions	
• Order	of	operations	
• Units	and	dimensional	analysis	

	
When	scientists	or	mathematicians	look	at	a	formula,	they	see	much	more	than	a	bunch	
of	symbols	or	a	recipe	for	calculating	something.	They	see	stories	about	relationships—
stories	that	help	them	understand	the	connections	between	things.		
	
Stories	That	Formulas	Tell	includes	problems	from	everyday	life,	science,	finance,	sports,	
and	geometry.	There	is	a	strong	emphasis	on	science,	because	math	is	such	a	central	
part	of	science,	and	scientific	formulas	provide	so	many	excellent	examples	of	different	
mathematical	relationships.	
	
You	may	use	this	activity	flexibly.	Select	any	set	of	problems	in	order	to	focus	on	
concepts	or	topics	of	your	choice.	For	example,	if	your	main	goal	is	to	deepen	your	
students’	understanding	of	negative	numbers,	you	might	assign	Problems	#1,	#4,	#7,	
and	#8.	The	problems	are	challenging,	so	it	is	best	to	choose	at	least	one	or	two	of	the	
earlier	problems	in	order	get	students	started	successfully.		
	
This	activity	has	a	slightly	different	format	than	others.	There	is	a	single	page	containing	
all	of	the	formulas	if	you	prefer	to	give	them	to	students	all	at	once.	More	importantly,	
there	is	just	one	page	of	Conversation	Starters.	It	contains	a	single	set	of	questions	to	
use	with	every	formula.	I	suggest	leading	a	brief	conversation	before	distributing	this	
page.	Begin	by	showing	students	the	formulas	from	Problem	#1.	Ask	them	to	“notice	
and	wonder”	as	much	as	they	can.	Gently	steer	the	conversation	toward	the	questions	
on	the	Conversation	Starters	page.	See	how	many	of	the	questions	your	students	can	
come	up	with	on	their	own!	Afterwards,	give	each	student	a	copy	of	the	Conversation	
Starters	to	use	for	the	remainder	of	the	project.	
	
Students	need	not	answer	every	question	for	every	problem,	but	they	should	at	least	
consider	whether	each	question	applies.	Since	every	formula	has	its	own	unique	
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characteristics,	different	questions	take	center	stage	in	each	one.	Of	course,	students	
should	ask	and	answer	their	own	questions	as	well!	
	
The	solutions	in	this	project	are	longer	than	usual.	There	is	so	much	to	learn	from	
studying	even	the	simplest	equations	closely!	Students	will	learn	more	from	analyzing	a	
few	formulas	in	detail	than	from	rushing	to	complete	as	many	as	possible.		
	
In	addition	to	the	usual	observations	and	strategies,	the	solutions	include	a	lot	of	factual	
information	that	students	are	unlikely	to	know	and	cannot	be	expected	to	figure	out	for	
themselves.	This	is	especially	true	at	the	beginning	of	each	problem.	After	students	have	
tried	to	predict	the	meaning	of	each	variable	and	the	purpose	of	the	formula,	you	will	
need	to	give	them	this	information	in	order	for	them	to	proceed.	
	
After	they	have	thought	about	a	problem	or	a	formula	for	a	long	time,	you	might	like	to	
share	additional	facts	with	them	or	encourage	them	to	do	some	of	their	own	research.	
The	important	thing	is	for	them	to	do	as	much	independent	thinking	as	they	can	first.	
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Stories	That	Formulas	Tell	
Formula	page	

	
	
	
Stage	1	
	
1. 𝑑 = 𝑟𝑡									 	 𝐹 = 𝑚𝑎	 	 	 Daily	life	and	science	
	
2. 𝐴 = 𝜋𝑟* 	 	 	 𝑑 = 16𝑡*	 	 	 Geometry	and	science	
	

3. 𝑡 = -.
/
																												𝐴 = 180 − -*.

4
					 	 Finance	and	geometry	

	
	
	
Stage	2	
	
4. 𝑅 = 0.3𝑆 − 0.6𝐶	 	 	 	 	 Sports	(baseball)	
	
	

5. 𝑆 = 10 + ;<=;>
*

− (𝑋A + 𝑋*)	 	 	 Sports	(gymnastics)	
	

6. 𝑏 = D
EFG>

															𝑇 = *F
I
𝐿		 	 	 Science	(light	and	motion)	

	
	
	
Stage	3	
	
7. 𝑣 = 𝑣. + 𝑎𝑡	 	 	 	 	 	 Science	(motion)	
	
	
8. 𝑡L = M

AN O
P

>	 	 	 	 	 	 Science	(Einstein)	

	
	
	
	 	



©	Jerry	Burkhart	2017	
5280math.com	

Conversation	Starters	
for	all	formulas	

	
	
Ask	questions	like	these	in	order	to	understand	the	story	that	a	formula	is	telling.	
Ask	your	own	questions,	too!	Find	your	own	new	equations	to	explore!	
		
What	do	the	variables	stand	for?	
What	do	the	subscripts	(if	any)	mean?	
What	might	the	units	(if	any)	of	each	variable	be?	
How	do	the	units	relate	to	each	other?	
Would	the	formula	change	if	you	changed	the	units?	If	so,	how?	
Why	are	certain	quantities	added?	Subtracted?	Multiplied?	Divided?	
	
If	there	is	more	than	one	formula,	what	do	they	have	in	common?	How	are	they	
different?	

	
Do	certain	symbols	represent	constant	numbers	that	never	change?	
Do	certain	symbols	represent	numbers	that	remain	constant	in	a	particular	situation?	
	
When	a	variable’s	value	changes,	how	does	it	affect	the	other	variables’	values?	
Examples	of	general	changes:	increasing,	decreasing.	
Examples	of	specific	changes:	doubling,	tripling,	halving,	adding	1.	

Answer	the	same	question	if	multiple	values	change	simultaneously.	
	
Can	any	of	the	variables	be	equal	to	0?	Which	ones	and	why?	What	does	this	mean	
about	the	values	of	the	other	variables?	

Can	any	of	the	variables	be	negative?	Which	ones	and	why?	What	does	this	tell	you	
about	the	values	of	the	other	variables?	

How	do	the	answers	to	these	questions	relate	to	the	real-world	situation?	
	
Are	there	any	restrictions	on	the	possible	values	of	the	variables?	What	causes	these	
restrictions?	Consider	both	real-world	and	mathematical	causes.	

What	happens	when	certain	variables	take	on	extreme	values?	Consider	both	real-world	
and	mathematical	consequences.	
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Stage	1	
	
	
In	Problem	#1,	students	investigate	two	simple	formulas	about	motion.	The	first	formula	
may	be	familiar,	but	the	second	formula	may	not.	After	students	make	predictions	
about	what	the	formulas	mean,	share	the	facts	about	the	variables	and	units	with	them	
so	that	they	can	move	forward	with	further	analysis.	(See	the	beginning	of	the	Solutions	
to	find	this	information).	Use	the	same	approach	for	all	problems	in	the	activity.	
	
Problem	#2	introduces	equations	that	involve	a	squared	quantity.	The	first	formula	(for	
the	area	of	a	circle)	may	be	familiar	to	them.	Comparing	and	contrasting	the	two	
formulas	will	help	students	learn	to	see	larger	patterns	in	mathematical	relationships.	
	
The	third	problem	asks	students	to	deal	with	variables	in	denominators.	For	these	
formulas,	increasing	the	value	of	one	variable	decreases	another.	
	
A	key	to	success	with	these	problems	is	imagination!	If	students	feel	stuck,	they	can	
feed	their	imagination	by:	

(1) performing	“thought	experiments”	
Change	some	aspect	of	the	real-world	situation,	and	imagine	how	it	affects	other	aspects.	

(2) substituting	lots	of	numbers	
Change	the	numbers	and	observe	how	the	other	variables	respond.	

	
	
What	students	should	know	

• Be	familiar	with	the	standard	order	of	operations.	
• Know	and	use	rules	for	computing	with	positive	and	negative	numbers.	
• Evaluate	algebraic	expressions.	

	
What	students	will	learn	

• Use	formulas	to	understand	relationships	between	quantities.		
• Use	formulas	to	explore	the	effects	of	change.	
• Interpret	negative	numbers	in	real-world	contexts.	
• Understand	how	units	of	measurement	combine.	
• Use	math	to	explore	new	and	challenging	scientific	and	practical	concepts.	 	
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Problem	#1	
	

	
daily	life	and	science	

𝑑 = 𝑟𝑡																													𝐹 = 𝑚𝑎	
	

	
Directions	

• Try	to	predict	what	the	formulas	are	about	and	what	the	variables	mean.	
• Answer	questions	like	the	ones	on	the	Conversation	Starters	page.	
• Ask	and	answer	your	own	questions	about	the	formulas.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Diving	Deeper	
Find	other	formulas	that	have	a	format	similar	to	these.	Compare	and	analyze	them.	
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Solutions	for	#1	
	
	
Facts	

𝑑 = 𝑟𝑡	 	 	 motion	in	a	straight	line	at	constant	speed	
𝑑:	distance	traveled	
𝑟:	rate	of	travel	
𝑡:	time	traveled	

	
𝐹 = 𝑚𝑎	 	 	 Newton’s	second	law	of	motion	

𝐹:	force	
𝑚:	mass	
	𝑎:	acceleration	

	
Sample	choices	of	units	

𝑑 = 𝑟𝑡	 	 Customary	units	 	 Metric	units	
	 rate:	 	 feet/second	 	 	 meters/second	
	 time:	 	 seconds	 	 	 seconds	
	 distance:		 feet	 	 	 	 meters	
	
𝐹 = 𝑚𝑎	 	 Metric	units	(Customary	units	are	rarely	used	by	scientists.)	

mass:	 	 kilograms	
acceleration:	 meters/second2	(You	can	think	of	this	as	“(m	per	sec)	per	sec.”)	
force:	 	 newtons	(kilogram-meters/second2)	
	

Notice	how	the	units	multiply	together.	For	example:	
feet/second	∙	seconds	=	feet	
kilograms	∙	meters/second2	=	kilogram-meters/second2	(also	called	Newtons)	
	

If	you	mix	units	(for	example,	if	you	use	meters	for	d	but	feet	per	second	for	r,	you	
need	to	put	a	number	into	the	formula	to	make	this	conversion.	
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Common	features	of	the	formulas	
Both	formulas	have	the	same	format:	one	quantity	is	equal	to	the	product	of	two	
other	quantities.	Because	of	this,	the	basic	relationship	between	the	quantities	in	
one	equation	is	the	same	as	in	the	other.	

	
Constants	

Neither	formula	contains	constants	that	can	never	change,	but	they	do	describe	
situations	in	which	one	of	the	variables	usually	stays	constant.	𝑑 = 𝑟𝑡	typically	deals	
with	motion	at	a	constant	rate	(𝑟),	while	𝐹 = 𝑚𝑎	describes	the	motion	of	an	object	
with	a	constant	mass	(𝑚).	When	𝑟	and	𝑚	are	constant,	they	are	the	rates	of	change	
(slopes)	of	linear	relationships.	(𝑑	is	linear	with	regard	to	𝑡,	etc.)	
	
There	are	unusual	cases	where	𝑚	changes	during	motion.	For	example,	a	rocket’s	
mass	decreases	during	flight	as	it	burns	fuel.	Or	a	snowball	may	gather	more	snow	as	
it	rolls	down	a	hill.	This	complicates	the	process	of	calculating	the	motion.	Also,	
Einstein	discovered	that	an	object’s	mass	increases	as	its	speed	increases!	The	effect	
is	so	extremely	small	in	everyday	life	that	we	never	notice	it.	(See	Problem	#8.)	

	
Effects	of	changing	the	values	of	variables	

Note:	Students	should	explore	these	kinds	of	changes	by	experimentation—by	
substituting	lots	of	numbers.	Then	they	should	verify	that	their	mathematical	
discoveries	make	sense	in	the	real-world.	
	
Assuming	that	the	rate	is	constant,	when	you	double	𝑡,	𝑑	must	double	as	well.	This	
makes	sense:	if	you	travel	twice	as	long	at	a	constant	speed,	you	will	go	twice	as	far.	
	
Assuming	that	the	mass	is	constant,	when	you	double	𝐹,	𝑎	must	double	as	well.	This	
makes	sense,	too.	For	a	given	mass,	you	must	apply	twice	the	force	in	order	to	
produce	twice	the	acceleration.	
	
Another	thought	experiment:	

Suppose	you	double	the	mass.		If	you	keep	the	acceleration,	𝑎,	the	same,	then	𝐹	
must	double.	In	other	words,	it	now	takes	twice	as	much	force	to	produce	the	
same	acceleration.	Since	acceleration	means	change	in	motion,	Newton’s	second	
law	tells	us	that	the	greater	the	mass,	the	more	an	object	resists	changing	its	
motion.	(This	resistance	is	called	inertia.)	Most	of	us	think	of	mass	as	the	amount	
of	“stuff”	an	object	has	in	it.	A	truer	understanding	is	that	mass	is	an	object’s	
resistance	to	change	in	motion.	 	
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Zero	values	
Any	of	the	three	quantities	can	be	0	in	𝑑 = 𝑟𝑡.	If	either	𝑟	or	𝑡	is	0,	then	𝑑	will	be	0.	If	
𝑑	is	0,	then	either	𝑟	or	𝑡	must	be	0.	
	
𝐹	or	𝑎	can	be	0	in	𝐹 = 𝑚𝑎.	If	either	is	0,	then	the	other	must	be	0	as	well.	It	
probably	does	not	make	sense	for	𝑚	to	be	0.	If	it	were,	you	could	produce	any	
acceleration	with	no	force	at	all,	because	𝐹	would	equal	0	no	matter	what	value	𝑎	
had!	(Physicists	have	discovered	particles	such	as	neutrinos,	which	at	first	appeared	
to	be	massless,	but	now	have	been	discovered	to	have	a	very	small	mass.	Particles	of	
light,	called	photons,	have	no	mass,	but	their	motion	is	governed	by	other	laws.)		
		

Negative	values	
In	𝐹 = 𝑚𝑎,	𝑚	must	be	positive.	Negative	mass	makes	no	sense	(except	perhaps	in	
exotic	theories	from	modern	physics).	If	you	choose	a	certain	direction	as	positive,	
then	negative	values	of	𝐹	represent	a	force	pointing	in	the	opposite	of	this	direction	
(and	similarly	for	acceleration).	Since	𝑚	is	positive,	𝐹	and	𝑎	always	have	the	same	(+	
or	–)	sign,	meaning	that	they	point	the	same	direction.	In	other	words,	a	force	
pointing	in	some	direction	produces	an	acceleration	(though	not	necessarily	a	
velocity!)	in	the	same	direction.	If	𝑚	were	negative,	applying	a	force	in	one	direction	
would	accelerate	the	object	in	the	opposite	direction!	
	
In	𝑑 = 𝑟𝑡,	any	of	the	three	quantities	may	be	negative.	Once	you	choose	a	positive	
direction,	the	opposite	direction	is	negative.	Suppose	that	you	choose	positive	to	the	
right,	so	that	negative	is	to	the	left.	If	𝑟	is	negative,	the	object	is	moving	to	the	left.	
Multiplying	𝑟	by	a	(positive)	time	gives	a	negative	answer	for	𝑑,	meaning	that	the	
object	is	now	located	to	left	of	where	it	started	at	𝑡 = 0.	
	
You	may	choose	any	starting	time	to	call	𝑡 = 0.	When	𝑡 = 0,	𝑑	must	equal	0.	In	
other	words,	𝑑 = 0	stands	for	your	starting	position.	If	𝑟	and	𝑡	are	both	negative	
(and	if	the	object	has	been	moving	the	same	way	even	before	this	time),	then	𝑑	is	
positive.	This	makes	sense,	because	if	the	object	is	moving	to	the	left,	and	you	asking	
where	it	was	before	𝑡 = 0,	It	will	have	been	to	the	right	of	the	starting	point!	
	

Note:	Students	may	also	ask	and	answer	their	own	questions!	For	instance,	they	may	
wonder	how	to	calculate	position	if	the	rate	is	constantly	changing.	 	



©	Jerry	Burkhart	2017	
5280math.com	

Problem	#2	
	
	

	 	 	 									geometry																																					 	 	science	

				𝐴 = 𝜋𝑟*																																𝑑 = 16𝑡*	
	
	

Directions	
• Try	to	predict	what	the	formulas	are	about	and	what	the	variables	mean.	
• Answer	questions	like	the	ones	on	the	Conversation	Starters	page.	
• Ask	and	answer	your	own	questions	about	the	formulas.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Diving	Deeper	

Find	other	formulas	that	have	a	format	similar	to	these.	Compare	and	analyze	them.	
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Solutions	for	#2	
	
Facts	

𝐴 = 𝜋𝑟* 	 	 	 area	of	a	circle	
𝐴:	area	
𝜋:	a	constant	
𝑟:	radius	

	
𝑑 = 16𝑡*	 	 	 motion	of	a	falling	object	

𝑑:	distance	fallen	
16:	a	constant	
𝑡:	time	fallen	

	
Sample	units	

𝐴 = 𝜋𝑟*	 	 Customary	units	 	 Metric	units	
radius:		 inches	 	 	 	 centimeters	
π	 	 none	 	 	 	 none	

	 area:	 	 square	inches	(in2)	 	 square	centimeters	(cm2)	
	 	
𝑑 = 16𝑡* 	 Customary	units	 	 	

time:	 	 seconds	 	 	 	
16:	 	 feet	per	second2	(ft/sec2)	 	 	

	 distance:	 feet	
	
Notice	how	the	units	multiply	together.	For	example:	

inches	∙	inches	=	inches2	
feet/second2	∙	(seconds)2	=	feet	
	
The	number	16	must	have	units	of	ft/sec2	in	order	for	the	units	to	multiply	
properly	as	above.	In	fact,	16	ft/sec2	is	half	of	32	ft/sec2,	which	is	the	
acceleration	of	an	object	falling	to	Earth	(when	air	resistance	is	small).	You	may	
think	of	32	ft/sec2	as	an	increase	in	speed	of	32	ft/sec	every	second.	
	
The	formula,	𝑑 = 16𝑡*	is	often	written	as	𝑑 = A

*
𝑔𝑡*,	where	𝑔 = 32	ft/sec2	

stands	for	the	acceleration	due	to	Earth’s	gravity.	The	factor	of	one-half	shows	
up	often	in	formulas	that	involve	the	square	of	a	quantity.	
	
If	you	use	units	other	than	feet	(meters,	for	instance),	the	number	16	changes.	
This	number	also	changes	if	you	are	on	a	different	planet,	because	the	force	of	
gravity	is	different.	The	formula	𝑑 = A

*
𝑔𝑡*	is	more	general	than	𝑑 = 16𝑡*,	

because	it	fits	all	of	these	situations.	 	
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Common	features	of	the	formulas	
Both	formulas	have	the	same	format:	one	quantity	equals	a	constant	times	the	
square	of	another	quantity.	Because	of	this,	the	basic	relationship	between	the	
quantities	in	one	equation	is	the	same	as	in	the	other.	
	

Constants	
The	number,	π,	is	a	constant	that	never	changes.	It	is	a	specific	number	whose	value	
is	always	the	same,	regardless	of	the	situation	in	which	you	use	it.	

	
The	number,	16,	is	a	constant	that	applies	on	the	Earth	when	you	use	units	of	feet	
and	seconds.	As	discussed	above,	this	number	will	change	if	the	units	change	(or	the	
planet	changes).	
	

Effects	of	changing	the	values	of	variables	
If	you	double	the	radius,	the	area	multiplies	by	4.	If	you	triple	the	radius,	the	area	
multiplies	by	9.	In	general,	if	you	multiply	the	radius	by	𝑛,	the	area	multiplies	by	𝑛*.	
	
If	you	double	the	time,	the	object	falls	4	times	as	far.	In	triple	the	time,	it	falls	9	
times	as	far.	In	general,	if	you	multiply	the	time	the	object	has	fallen	by	𝑛,	the	
distance	it	has	fallen	multiplies	by	𝑛*.	
	
These	effects	are	the	same	for	both	formulas,	because	both	formulas	have	the	same	
form:	a	quantity	equal	to	a	constant	multiplied	by	another	quantity	squared.	
	

Zero	value	
A	circle	of	radius	0	would	not	be	very	interesting;	it	would	be	a	point	with	area	0!	
	
In	the	second	formula,	𝑡 = 0	represents	the	time	that	an	object	begins	its	drop.	If	
you	choose	to	let	𝑡 = 0	represent	a	different	time,	you	will	have	to	adjust	the	
formula.	

	
Negative	values	

A	negative	radius	or	area	makes	no	sense	in	the	case	of	𝐴 = 𝜋𝑟*.	
	
A	negative	time	in	the	second	formula	would	represent	a	time	before	the	object	was	
dropped,	which	does	not	fit	this	real-world	situation.	
	

Note:	Students	may	also	ask	and	answer	their	own	questions!	For	instance,	they	may	
want	to	explore	how	the	number	16	changes	on	different	planets	or	for	different	units.	
They	may	wonder	how	the	whole	formula	changes	if	you	include	the	effects	of	air	
resistance.	
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Problem	#3	
	

	
		finance	 	 	 	 				geometry	

								𝑡 =
70
𝐼 																											𝐴 = 180 −

720
𝑛 	

	
	

	
	
Directions	

• Try	to	predict	what	the	formulas	are	about	and	what	the	variables	mean.	
• Answer	questions	like	the	ones	on	the	Conversation	Starters	page.	
• Ask	and	answer	your	own	questions	about	the	formulas.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Diving	Deeper	

Find	other	formulas	that	have	a	format	similar	to	these.	Compare	and	analyze	them.	
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Solutions	for	#3	
	
	

Facts	

												𝑡 = -.
/
					 	 	 growth	of	money	in	a	savings	account	

𝑡:	time	required	for	the	money	to	double	
𝐼:	Interest	rate	

																														 	 	
	 𝐴 = 180 − -*.

4
	 	 angle	at	the	tip	of	a	star	formed	from	a	regular		

	 	 	 	 	 polygon	(See	the	pictures	for	a	pentagon	and		
	 	 	 	 	 hexagon.)	

𝐴:	angle	
𝑛:	number	of	sides	in	the	polygon				

	
Sample	units	

	 	 	 	 Customary	units	

𝑡 =
70
𝐼 	

𝐼:	 	 	 percent	per	year	
70:	 	 	 percent	

	 𝑡:	 	 	 years	
	 	
	 	 	 	 	

	
𝑛:	 	 	 none	 	 	 	
180	and	720:	 	 degrees	 	 	

	 𝐴:	 	 	 degrees	
	
Notice	how	the	units	combine.	

percent	/	(percent	per	year)	=	years	
degrees	–	degrees	=	degrees	
	
The	second	equation	reinforces	the	idea	that	you	always	subtract	like	from	like.	
Note:	Dividing	a	unit	by	a	quantity	that	has	no	units	leaves	the	unit	unchanged.	

	
The	constant,	70,	in	the	first	formula	stays	the	same	as	long	as	the	two	units	of	
time	are	the	same.	However,	if	you	were	to	use	units	of	percent	per	year	for	𝐼	
and	wanted	an	answer	in	months,	you	would	need	to	adjust	the	value	of	the	
numerator	in	order	to	make	the	conversion.		 	

A = 180 − 720
n



©	Jerry	Burkhart	2017	
5280math.com	

Common	features	of	the	formulas	
Both	formulas	contain	a	fraction	with	a	constant	in	the	numerator	and	a	variable	in	
the	denominator.	This	format	has	a	big	impact	on	how	the	values	of	the	quantities	
change.	The	second	formula	is	different	in	that	the	fraction	is	subtracted	from	a	
constant.	
	

Constants	
The	first	formula	is	approximate,	because	the	number	70	is	approximate.	Students	
will	learn	in	high	school	that	this	number	comes	from	the	natural	logarithm	of	2	
(𝑙𝑛	2),	which	is	approximately	0.693.	It	is	expressed	as	a	percentage,	because	the	
interest	rate	is	also	expressed	as	a	percentage.	You	could	just	as	well	express	both	
numbers	in	the	fraction	as	decimals.	The	whole	number	(percentage)	version	is	
probably	easier.	
	
Students	will	learn	another	unit	(radians)	for	measuring	angles	when	they	study	
trigonometry.	Using	radians	would	require	180°	and	720°	to	be	expressed	differently	
(as	π	and	4π).	
	

Effects	of	changing	the	values	of	variables	
In	the	first	formula,	as	𝐼	increases,	𝑡	decreases	and	vice	versa.	This	makes	sense,	
because	you	would	expect	the	doubling	time	to	decrease	when	you	have	a	higher	
interest	rate.	More	specifically,	when	interest	rate,	𝐼,	doubles,	the	time,	𝑡,	becomes	
half	as	long.	In	general,	when	you	multiply	𝐼	by	𝑛,	the	time,	𝑡,	multiplies	by	1 𝑛.		
	
In	the	second	formula,	as	𝑛	increases,	720 𝑛	decreases.	Since	you	are	subtracting	a	
decreasing	fraction	from	180°,	the	answer	is	getting	closer	to	180°.	This	makes	
sense.	Imagine	extending	the	sides	of	a	regular	polygon.	As	you	increase	the	number	
of	sides	of	the	polygon,	the	angles	in	the	star-tips	“flatten	out”	and	approach	a	
straight	angle.	(The	sides	of	the	stars	also	get	closer	and	closer	to	the	sides	of	the	
polygon.)	
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Zero	values	
If	the	interest	rate	were	0%,	the	money	would	never	double.	This	is	reflected	in	the	
fact	that	division	by	0	is	undefined.	As	the	interest	rate	gets	smaller	and	smaller	
(approaching	0),	the	doubling	time	increases	without	limit.	Some	students	may	
imagine	an	infinite	doubling	time.	
	
On	the	other	hand,	there	is	no	interest	rate	high	enough	to	make	the	doubling	time	
equal	to	0.	As	the	interest	rate	increases	without	limit,	the	doubling	time	gets	closer	
and	closer	to	0	but	never	gets	there.	
	

Negative	values	
Negative	interest	rates	and	doubling	times	do	not	make	sense.	Polygons	with	a	
negative	number	of	sides	do	not	make	sense	either.	However,	the	second	formula	
will	give	a	zero	or	negative	value	for	a	for	some	polygons.	See	the	discussion	below.	
	

Constraints	on	the	values	of	the	variables	
In	the	first	formula,	𝐼	and	𝑡	may	take	on	any	positive	values.	Extreme	values	are	
probably	not	realistic,	but	it	is	hard	to	define	a	clear	cutoff	point	between	
reasonable	and	unreasonable	values.	
	
In	the	second	formula,	𝑛	must	be	a	whole	number	greater	than	or	equal	to	3.	(There	
are	no	polygons	with	fewer	than	3	or	a	fractional	number	of	sides.)	Of	course,	it	is	
possible	to	substitute	other	values	into	the	equation,	but	the	answers	will	not	be	
meaningful	in	this	situation.		
	
Interestingly,	if	you	substitute	𝑛 = 3	or	𝑛 = 4	into	the	equation,	you	get	answers	of		
-60°	and	0°	respectively	for	𝐴,	which	do	not	appear	to	be	reasonable	angles	for	the	
tips	of	a	star.	This	suggests	that	you	cannot	make	a	star	by	extending	the	sides	of	an	
equilateral	triangle	or	a	square,	which	is	true!	However,	some	students	may	be	able	
to	come	up	with	creative	meanings	for	the	values	-60°	and	0°	by	visualizing	what	
happens	to	the	extended	sides	as	n	gets	smaller	and	smaller.	
	
There	is	no	limit	on	how	large	𝑛	can	be.	As	it	becomes	extremely	large,	𝐴	will	be	
virtually	indistinguishable	from	180°,	and	the	star	will	look	more	and	more	like	the	
polygon	it	is	made	from,	which	in	turn	will	look	more	and	more	like	a	circle!	

	
Note:	Students	may	also	ask	and	answer	their	own	questions!	For	example,	they	may	
wonder	if	it	is	possible	to	find	formulas	for	tripling	or	quadrupling	times.	 	
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Stage	2	
	
	
The	formulas	in	Stage	2	look	quite	a	bit	more	complex	than	those	in	Stage	1,	but	this	is	
only	because	they	contain	more	“pieces.”	In	particular,	most	of	them	have	more	
variables.	The	concepts	underlying	the	formulas	are	not	much	more	difficult	than	those	
in	Stage	1.	The	key	is	for	students	to	identify	the	pieces,	examine	them	separately,	and	
then	put	them	together.	
	
What	students	should	know	

• Be	familiar	with	the	standard	order	of	operations.	
• Know	and	use	rules	for	computing	with	positive	and	negative	numbers.	
• Evaluate	algebraic	expressions.	

	
What	students	will	learn	

• Use	formulas	to	understand	relationships	between	quantities.		
• Use	formulas	to	explore	the	effects	of	change.	
• Interpret	negative	numbers	in	real-world	contexts.	
• Understand	how	units	of	measurement	combine.	
• Use	math	to	explore	new	and	challenging	scientific	and	practical	concepts.	

	
These	prerequisites	and	goals	are	the	same	as	in	Stage	1,	but	the	formulas	are	more	
complex.	 	
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Problem	#4	
	
	

sports	(baseball)	

𝑅 = 0.3𝑆 − 0.6𝐶	
	

	
	
Directions	

• Try	to	predict	what	the	formula	is	about	and	what	the	variables	mean.	
• Answer	questions	like	the	ones	on	the	Conversation	Starters	page.	
• Ask	and	answer	your	own	questions	about	the	formula.	
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Solutions	for	#4	
	

	
Facts	

𝑅 = 0.3𝑆 − 0.6𝐶	 	 	 the	“stolen	base	runs”	statistic	in	baseball	
𝑅:	stolen	base	runs	statistic	
𝑆:	number	of	stolen	bases	
𝐶:	number	of	times	caught	stealing	base	
	

The	stolen	base	runs	statistic,	𝑅,	predicts	how	attempts	to	steal	base	affect	the	
overall	number	of	runs	that	a	team	scores.	
	

Units	
The	variables	and	numbers	have	no	units.	𝑆	and	𝐶	just	count	the	number	of	times	a	
base	is	stolen	or	the	runner	is	caught.	𝑅	is	just	a	number	that	combines	𝑆	and	𝐶	in	a	
meaningful	way	using	the	numbers	0.3	and	0.6.	
	

The	meanings	of	the	operations	
Students	must	know	the	standard	order	of	operations	in	order	to	interpret	this	
formula	correctly.		
	
The	right	side	of	the	formula	comes	in	two	“pieces”	called	terms.	The	first	term,	
0.3𝑆,	describes	the	effect	of	successfully	stolen	bases.	The	second,	term,	0.6𝐶,	
describes	the	effect	of	a	runner	getting	caught	stealing.	The	fact	that	the	second	
term	is	subtracted	shows	that	getting	caught	decreases	the	value	of	𝑅.	On	the	other	
hand,	when	𝑆	increases,	𝑅	increases	with	it.	Since	stealing	base	successfully	is	better	
than	getting	caught,	it	appears	that	high	𝑅	scores	are	more	desirable	than	low	𝑅	
scores	(as	you	might	expect).	
	

Constants	
The	constants	0.3	and	0.6	have	no	obvious	meaning	by	themselves,	but	multiplying	
each	variable	by	its	constant	gives	the	appropriate	weights	to	𝑆	and	𝐶.	Since	0.6	is	
greater	than	0.3,	the	variable	𝐶	has	greater	power	than	does	𝑆	to	affect	the	value	of	
𝑅.	In	other	words,	getting	caught	stealing	hurts	more	than	a	successful	steal	helps.	
	

Effects	of	changing	the	values	of	variables	
When	you	increase	𝑆	by	1,	the	value	of	𝑅	increases	by	0.3.	When	you	increase	𝐶	by	
1,	the	value	of	𝑅	decreases	by	0.6.	This	shows	the	relative	effects	of	𝑆	and	𝐶	very	
precisely.	
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Zero	values	
𝑆	and	𝐶	can	equal	0	(both	or	separately).	
	
𝑅	will	equal	0	whenever	the	number	of	successful	steals	is	twice	the	number	of	
times	that	the	runner	gets	caught.	It	may	take	a	little	time	and	effort	for	students	to	
reach	this	conclusion.	They	may	do	it	(1)	intuitively,	(2)	by	substituting	numbers,	or	
(3)	by	solving	the	equation	0.3𝑆 − 0.6𝐶 = 0	for	𝑆	or	𝐶.	
	
Example:		

If	𝑆 = 8	and	𝐶 = 4	then:	
𝑅 = 0.3 ∙ 8 − 0.6 ∙ 4	

= 2.4 − 2.4	
= 0	

In	general,	if	𝑆 = 2𝑛	and	𝐶 = 𝑛,	then:	
𝑅 = 0.3 ∙ (2𝑛) − 0.6𝑛	
0.3 ∙ 2 𝑛 − 0.6 ∙ 𝑛	
= 0.6𝑛 − 0.6𝑛	

= 0	
	
It	seems	reasonable	to	guess	(and	it	is	true!)	that	an	𝑅	value	of	0	means	that	
attempted	steals	have	had	a	neutral	effect	on	a	team’s	number	of	runs.	Thus,	
𝑆 = 2𝐶	represents	a	sort	of	“break-even”	point.	
	

Negative	values	
It	does	not	make	sense	for	𝑆	or	𝐶	to	be	negative,	but	𝑅	may	be	either	positive	or	
negative.	
	
If	𝑆 > 2𝐶,	then	𝑅	is	positive,	meaning	that	the	team’s	(or	a	player’s)	net	number	of	
runs	has	probably	increased	due	to	stealing.	
	
If	𝑆 < 2𝐶,	then	𝑅	is	negative,	meaning	that	the	team’s	(or	a	player’s)	net	number	of	
runs	has	probably	decreased	due	to	stealing.	
	

Constraints	on	the	values	of	the	variables	
𝑆	and	𝐶	must	both	be	whole	numbers.	𝑅	will	always	be	a	multiple	(positive	or	
negative)	of	0.3.	Large	absolute	values	of	𝑆,	𝐶,	and	𝑅	are	unlikely,	because	of	the	
limited	number	of	times	that	a	player	or	a	team	is	likely	to	attempt	stealing	base.	
However,	there	is	no	clearly	defined	limit	to	these	values.	
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General	observations	
Base-stealing	has	become	less	frequent	in	professional	baseball	in	recent	years,	
probably	because	the	mathematics	has	shown	that	it	may	be	less	beneficial	than	
previously	believed.	Teams	are	likely	to	be	more	strategic	by	focusing	their	stealing	
attempts	on	times	when	the	benefits	are	likely	to	be	greater	(perhaps	when	stealing	
3rd	base,	when	bases	have	more	runners,	etc.).		They	may	also	restrict	it	to	players	
who	are	successful	often	enough	for	it	to	be	helpful.	
	

Note:	Students	may	also	ask	and	answer	their	own	questions!	For	example,	they	may	
wonder	how	the	formula	was	created.	Or	they	may	wonder	what	percentage	of	base	
stealing	attempts	must	be	successful	in	order	to	benefit	the	team.	Encourage	them	to	
figure	this	out!	(The	answer	is	about	67%	[two-thirds	of	the	time].	This	is	based	on	the	
break-even	number.	A	typical	rule	of	thumb	used	in	baseball	is	70%.)	 	



©	Jerry	Burkhart	2017	
5280math.com	

Problem	#5	
	

						
sports	(gymnastics)	

𝑆 = 10 +
𝐷A + 𝐷*

2 − 𝑋A + 𝑋* 	
	

	
	

Directions	
• Try	to	predict	what	the	formula	is	about	and	what	the	variables	mean.	
• Answer	questions	like	the	ones	on	the	Conversation	Starters	page.	
• Ask	and	answer	your	own	questions	about	the	formula.	
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Solutions	for	#5	
	

	

𝑆 = 10 + ;<=;>
*

− 𝑋A + 𝑋* 	 	 	 gymnastics	vault	score	(2013	–	2016)	
	
Facts	 	

𝑆:	overall	score	for	two	vaults	
10	and	2:	constants	
𝐷A:	difficulty	score	for	first	vault	
𝐷*:	difficulty	score	for	second	vault	
𝑋A:	execution	deductions	for	first	vault	
𝑋*:	execution	deductions	for	second	vault	

	
Units	

This	formula	has	no	units	(except	perhaps	points).	Each	number	represents	a	score	
of	some	type.	

	
The	meanings	of	the	operations	

The	formula	looks	complicated,	because	it	is	so	long.	However,	if	you	look	at	it	in	
three	separate	pieces,	it	is	not	so	confusing!	
	
First,	10	is	added	at	the	beginning,	because	every	vaulter	begins	with	a	score	of	10.	
In	fact,	according	to	the	formula,	if	you	did	not	perform	a	vault	at	all,	you	would	
receive	at	score	of	10,	because	𝐷A,	𝐷*,	𝑋A,	and	𝑋*	would	all	equal	0!	(I	suspect	that	
gymnastics	officials	would	probably	not	apply	the	formula	in	this	case…)	
	
The	fraction	in	the	middle	handles	the	points	awarded	for	difficulty.	The	more	
difficult	a	vault	is,	the	more	points	you	are	awarded.	This	is	sometimes	called	a	
“starting	value”	for	a	vault.	Adding	the	two	starting	values,	𝐷A	and	𝐷*,	and	dividing	
by	2	simply	gives	the	average	of	the	two	starting	values.	This	average	is	added	to	the	
10	points	that	every	vaulter	receives.	
	
The	𝑋A + 𝑋*	in	parentheses	at	the	end	of	the	formula	represents	the	total	
deductions	for	errors	in	the	gymnast’s	execution	of	the	vaults.	It	is	subtracted	in	the	
formula	because	deductions	decrease	a	gymnast’s	score.		
	
In	summary,	the	formula	gives	each	gymnast	10	points	to	start	with,	adds	the	
average	of	the	difficulty	points	(“starting	values”)	for	each	vault,	and	subtracts	all	of	
the	deduction	points.	
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Constants	
The	constant,	10,	could	be	changed	if	the	gymnastics	scoring	committee	decided	to	
start	gymnasts	with	a	different	base	score.	(If	they	removed	the	constant	altogether,	
gymnasts	would	receive	a	negative	score	whenever	their	deductions	exceeded	the	
average	of	their	difficulty	points!)	
	
The	constant,	2,	would	probably	not	be	changed,	because	it	is	used	in	the	averaging	
process.	

	
Effects	of	changing	the	values	of	the	variables	

The	effect	of	changing	the	value	of	𝑋A	or	𝑋*	is	very	direct.	The	gymnast’s	score	
decreases	by	the	same	amount	that	𝑋A	or	𝑋*	increases.	
	
The	effect	of	changing	the	value	of	D1	or	D2	is	a	little	less	straightforward.	Since	

𝐷A + 𝐷*
2 =

𝐷A
2 +

𝐷*
2 ,	

increasing	𝐷A	or	𝐷*	by	some	amount	increases	the	gymnasts	score	by	only	half	that	
amount.	In	other	words,	the	effect	of	averaging	the	two	values	of	𝐷	is	to	halve	the	
amount	that	each	𝐷	value	adds	to	the	total	score.	

	
Constraints	on	the	values	of	the	variables	

𝐷A,	𝐷*,	𝑋A,	and	𝑋*	are	all	positive	numbers.	The	possible	values	for	these	variables	
are	determined	by	the	people	who	design	the	scoring	process.	They	determine	the	
starting	(difficulty)	values	for	each	type	of	vault	and	the	amount	that	is	deducted	for	
each	error	in	execution.	

	
Other	observations	and	questions	

Before	2013,	each	vault	was	scored	separately	(10 + 𝐷 − 𝑋),	and	then	the	scores	for	
the	two	vaults	were	averaged.	What	would	this	formula	look	like?	Which	formula	
results	in	higher	scores?	How	much	higher?	Why?	What	has	been	the	overall	effect	
of	the	change?	Why	do	you	think	the	change	might	have	been	made?	
	

Note:	Students	may	also	ask	and	answer	their	own	questions!	
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Problem	#6	
	
	

				science	(light)	 	 	 						science	(motion)	

		𝑏 =
𝐿

4𝜋𝑑* 																												𝑇 =
2𝜋
𝑔

𝐿	

	
	
	
Directions	

• Try	to	predict	what	the	formulas	are	about	and	what	the	variables	mean.	
• Answer	questions	like	the	ones	on	the	Conversation	Starters	page.	
• Ask	and	answer	your	own	questions	about	the	formulas.	
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Solutions	for	#6	
	

Facts	
	

𝑏 = D
EFG>

	 	 	 	 brightness	of	a	light	source	
𝑏:	apparent	brightness	
𝐿:	luminosity	
4𝜋:	constant	
𝑑:	distance	from	source	
	
𝑇 = *F

I
𝐿	 	 	 	 pendulum	motion	

𝑇:	period	of	the	pendulum	(time	for	one	cycle)	
2𝜋:	constant	
𝑔:	gravitational	acceleration	constant	
𝐿:	length	of	the	pendulum	

	
Sample	units	 	
	 𝑏 = D

EFG>
	 	

	 	 	 	 	 Metric	units	
Apparent	brightness:	 	 watts	per	square	meter	
Luminosity:		 	 	 watts	
4𝜋:	 	 		 	 no	units	
Distance	from	source:		 meters	
	

𝑇 =
2𝜋
𝑔

𝐿	

Period:		 	 	 seconds	
2𝜋:	 	 	 	 no	units	
Gravitational	acceleration:	 meters	per	second2	

Length	of	the	pendulum:	 meters	
	

Notice	how	the	units	combine.	
watts	÷	((no	units)	•	meters2)	=	watts	÷	meters2	=	watts	per	square	meter	

	
The	second	one	is	complicated!	

	

		 	

(no units)
meters

seconds2

⋅ meters = meters ÷ meters
seconds2

=

meters
1

⋅ seconds2

meters
= seconds2 = seconds
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Comparing	the	formulas	
These	formulas	look	more	complex	than	most	of	the	others	up	to	this	point.	They	
both	involve	multiplying	a	constant	by	a	variable	expression.	The	variable	
expressions	have	different	forms.	In	the	first	formula,	there	is	a	variable,	𝐿,	in	the	
numerator,	and	a	second	variable,	𝑑,	which	is	squared	and	in	the	denominator.	In	
the	second	formula,	there	is	a	single	variable	underneath	a	square	root.	
	

Constants	

Each	constant	has	multiple	parts.	In	the	first	formula,	the	constant	is	 A
EF
.	In	the	

second	formula,	it	is	*F
I
.	If	you	write	each	constant	as	a	single	(approximate)	

number,	the	formulas	look	simpler—especially	the	second	one!	
	

first	formula:	𝑏 ≈ 0.0796 D
G>
	 	 	 	 			

second	formula:	𝑇 ≈ 2.006 𝐿	
	
Both	formulas	are	approximate,	because	the	decimals	have	been	rounded.	The	
second	formula	uses	the	metric	value	of	𝑔 ≈ 9.807	m/sec2	(on	the	Earth).	
(Remember	that	𝐿	means	something	different	in	each	formula!)	
	
The	presence	of	π	in	these	formulas	may	make	students	wonder	if	they	have	
something	to	do	with	circles	or	spheres.	The	answer	is	yes.	In	the	first	formula,	the	
light	from	a	source	is	spreading	out	with	the	same	intensity	in	all	directions	and	
equal	at	a	given	distance	from	the	source—and	the	collection	of	points	that	is	
equidistant	from	the	source	is	the	surface	of	a	sphere.	In	fact,	the	expression	4𝜋𝑑*	
in	the	denominator	is	the	surface	area	of	the	sphere	at	a	distance	of	𝑑	from	the	light	
source!	As	this	surface	become	larger	and	larger,	the	light	spreads	out	over	a	greater	
area	and	thus	becomes	dimmer.	
	
The	connection	to	π	is	less	obvious	for	the	second	formula.	You	might	think	that	it	is	
related	to	the	fact	that	a	pendulum’s	mass	travels	in	a	circular	arc,	but	the	real	
reason	is	that	the	mass	is	traveling	(approximately)	in	harmonic	motion.	Harmonic	
motion	often	occurs	in	a	straight	line	rather	than	a	circular	arc!	The	position	an	
object	in	harmonic	motion	is	described	by	a	single	coordinate	of	an	imaginary	object	
moving	on	a	circular	path	at	a	constant	rate.	
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Effects	of	changing	the	values	of	the	variables	
Examples	for	the	first	formula:	

• If	you	double	the	luminosity	(𝐿),	the	apparent	brightness	doubles	as	well.	
• If	you	double	the	distance	(𝑑)	from	the	light	source,	the	apparent	brightness	

becomes	one-fourth	of	what	it	was!	
• If	you	triple	the	distance	from	the	source,	you	will	have	to	make	the	light	

source	9	times	brighter	in	order	to	keep	the	apparent	brightness	the	same!		
Students	should	experiment	with	many	ways	of	adjusting	the	two	variables	both	
separately	and	together.	
	
Examples	for	the	second	formula:	

• If	you	double	the	length	of	the	pendulum,	the	period	becomes	 2	(about	
1.4)	times	longer.	

• In	order	to	double	the	period	of	the	pendulum,	you	must	quadruple	its	
length.	

• In	order	to	triple	the	period	of	the	pendulum,	you	must	make	it	9	times	
longer!	

• In	general,	in	order	to	make	the	period	𝑛	times	longer,	you	must	make	the	
pendulum	𝑛*	times	longer.	

	
Zero	and	extreme	values	

If	the	luminosity,	𝐿,	in	the	first	formula	is	0,	then	the	apparent	brightness	is	0	as	well	
(which	is	not	a	very	interesting	situation).	It	does	not	make	sense	for	the	distance,	𝑑,	
to	equal	0.	As	the	distance	from	the	source	becomes	smaller	and	smaller,	the	
formula	shows	that	the	apparent	brightness	increases	without	limit!	This	seems	
strange	and	suggests	that	the	formula	may	not	be	accurate	for	very	small	values	of	
𝑑.	On	the	other	hand,	if	𝑑	becomes	extremely	large,	the	apparent	brightness	dims,	
approaching	0	(if	the	luminosity	does	not	change),	which	certainly	makes	sense.	
	
Formulas	like	this	in	which	a	quantity	is	equal	to	something	divided	by	the	square	of	
some	variable	are	known	as	inverse	square	laws.	Other	examples	of	inverse	square	
laws	include	the	gravitational	force	generated	by	a	mass	and	the	electromagnetic	
force	generated	by	a	charge.	
	
In	the	second	formula,	the	length	and	period	could	both	be	very	close	to	0,	but	if	
they	were	equal	to	0,	there	would	be	no	pendulum!	The	formula	does	show,	
however,	that	as	the	pendulum	gets	shorter,	its	period	decreases,	meaning	that	it	
swings	faster.	It	is	probably	reasonable	to	expect	that	the	formula	is	less	accurate	in	
extreme	situations,	though.	By	the	way,	notice	that	the	formula	does	not	contain	a	
variable	for	the	mass.	Apparently,	the	mass	does	not	affect	the	period!	You	might	try	
making	pendulums	to	test	this!	 	
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Stage	3	
	
	
The	formula	for	Problem	#7	looks	simpler	than	many	of	the	formulas	from	earlier	
problems,	but	analyzing	the	various	possibilities	for	the	positive	and	negative	values	of	
each	variable	takes	a	lot	of	time	and	careful	thought.	Students	should	spend	plenty	of	
time	on	this	and	explain	their	thinking	as	carefully	as	they	can.	
	
Problem	#8	contains	Einstein’s	famous	time-dilation	equation	that	shows	how	time	
appears	to	slow	down	when	you	move	faster.	The	formula	requires	a	deep	and	careful	
analysis,	but	the	payoff	is	worth	it!	Students	get	a	glimpse	of	the	mathematics	behind	
one	of	the	important,	influential,	and	mind-bending	scientific	ideas	of	the	20th	century.	
	
	
What	students	should	know	

• Be	familiar	with	the	standard	order	of	operations.	
• Know	and	use	rules	for	computing	with	positive	and	negative	numbers.	
• Evaluate	algebraic	expressions.	

	
What	students	will	learn	

• Use	formulas	to	understand	relationships	between	quantities.		
• Use	formulas	to	explore	the	effects	of	change.	
• Interpret	negative	numbers	in	real-world	contexts.	
• Understand	how	units	of	measurement	combine.	
• Use	math	to	explore	new	and	challenging	scientific	and	practical	concepts.	

	
These	prerequisites	and	goals	are	the	same	as	in	Stages	1	and	2,	but	the	analysis	
required	is	more	deep	and	complex.	 	
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Problem	#7	
	

	
science	(motion)	

𝑣 = 𝑣. + 𝑎𝑡	
	

	
Directions	

• Try	to	predict	what	the	formula	is	about	and	what	the	variables	mean.	
• Answer	questions	like	the	ones	on	the	Conversation	Starters	page.	
• Ask	and	answer	your	own	questions	about	the	formula.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Testing	the	Waters	

Analyze	the	formula	𝑥 = 𝑥` + 𝑣𝑡.	Note:	This	formula	has	the	same	format	as	above,	
but	𝑣	is	replaced	by	𝑥	(the	position	of	the	object),	and	𝑎	is	replaced	by	𝑣.	The	
mathematical	ideas	are	the	same,	but	the	situation	is	easier	to	visualize.	

	
Diving	Deeper	

• Imagine	the	details	of	a	real-world	situation	in	which	the	formula	would	apply.	
What	is	the	object?	What	is	causing	the	constant	acceleration?	

• Analyze	the	straight-line	motion	formula,	𝑥 = 𝑣.𝑡 +
A
*
𝑎𝑡*,	where	𝑥	stands	for	

the	object’s	position.	Focus	on	the	meanings	of	negative	values	for	each	variable.		 	
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Solutions	for	#7	
	

	
Facts	

𝑣 = 𝑣. + 𝑎𝑡	 	 	 velocity	of	motion	with	constant	acceleration	
𝑣:	velocity	(at	the	time	𝑡)	
𝑣.:	initial	velocity	(when	𝑡 = 0)	
𝑎:	acceleration	
𝑡:	time	

	
Sample	units	

	 𝑣 = 𝑣. + 𝑎𝑡	 	 Customary	units	 	 Metric	units	
velocity:	 	 feet	per	second	 	 meters	per	second	
initial	velocity:		 feet	per	second	 	 meters	per	second	
acceleration:	 	 feet	per	second2	 	 meters	per	second2	

	 time:	 	 	 seconds	 	 	 seconds	
	
Notice	how	the	units	combine.	

ft/sec	+	ft/sec2	∙	sec	=	ft/sec	+	ft/sec	=	ft/sec	
	
Values	that	you	add	(or	subtract)	in	a	formula	must	always	have	like	units.	
	

Constants	
𝑎	and	𝑣.	may	be	any	numbers,	but	in	a	given	real-world	situation,	they	are	constant:	
there	can	be	only	one	starting	velocity,	and	once	you	have	a	value	for	the	
acceleration,	the	object	always	accelerates	at	that	rate.	(This	assumption	is	built	into	
the	formula.	If	the	acceleration	changed	while	the	object	moved,	it	would	not	make	
sense	to	simply	multiply	the	acceleration	by	the	time.)	
		
You	do	not	need	(constant)	numbers	in	the	formula	unless	the	units	don’t	match.	
For	example,	if	you	used	ft/sec2	for	the	acceleration	(𝑎)	but	used	minutes	for	the	
time	(𝑡),	you	would	need	to	multiply	the	acceleration	∙	time	(𝑎𝑡)	term	by	60	in	order	
to	convert	𝑡	into	seconds.	The	formula	would	become	𝑣 = 𝑣. + 60𝑎𝑡.	(This	would	
be	a	very	unconventional	thing	to	do!)	
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Effects	of	changing	the	values	of	the	variables	
As	stated	above,	the	acceleration	(𝑎)	and	the	initial	velocity	(𝑣.)	are	constant	in	any	
given	problem	situation.	This	leaves	𝑡	and	𝑣	as	the	variables.	If	you	think	naturally	of	
𝑡	as	the	input	and	𝑣	as	the	output,	you	have	a	linear	relationship	with	a	starting	
value	(𝑦-intercept)	of	𝑣.	and	a	rate	of	change	(slope)	of	𝑎.	(The	language	that	you	
and	the	students	use	to	talk	about	this	will	depend	on	their	previous	experience.)	
	
The	input	is	the	variable	that	you	naturally	think	of	changing.	Whenever	𝑡	increases	
by	1,	𝑣	changes	by	𝑎.	(This	is	the	definition	of	the	rate	of	change!)	
	

Zero	values	
Any	of	the	quantities	may	equal	0.	
	
If	𝑣. = 0,	it	simply	means	that	the	object	starts	at	rest.	In	that	case,	the	relationship	
is	proportional.	
	
If	𝑎 = 0,	then	the	object	is	not	accelerating.	It	is	moving	at	the	constant	speed,	𝑣..	
	
When	𝑡 = 0,	the	value	of	𝑣	is	equal	to	𝑣..	You	can	see	this	at	least	two	ways:	(1)	This	
is	the	definition	of	initial	velocity,	and	(2)	if	you	substitute	0	for	𝑡	in	the	formula,	you	
are	left	with	𝑣 = 𝑣..	
	
It	is	possible	for	𝑣	to	equal	0	one	time	during	the	object’s	motion.	Whenever	the	
acceleration	acts	in	a	direction	opposite	to	the	object’s	velocity,	the	object	will	slow	
down.	If	this	continues	for	long	enough,	it	will	eventually	stop.	(If	it	continues	even	
longer,	the	object	will	reverse	direction	and	begin	speeding	up	in	that	direction.)	

	
Negative	values	

Any	of	the	values	can	be	negative,	because	you	can	choose	the	time	that	𝑡 = 0	
represents	and	the	direction	represented	by	positive	velocity	and	acceleration	(in	
which	case	negative	numbers	stand	for	the	opposite	direction).	In	the	examples	
below,	we	will	assume	that	positive	values	of	𝑣.	and	𝑎	are	to	the	right	and	negative	
values	are	to	the	left.	
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Examples	of	negative	values:	(This	analysis	requires	patience	and	careful	thought!)	
	
(1) 𝑣.	and	𝑎	are	both	positive.	

The	object	is	moving	to	right	and	accelerating	to	the	right.	In	other	words,	at	
𝑡 = 0,	the	object	begins	with	a	rightward	speed	𝑣. 	and	moves	faster	and	faster.	
	
If	𝑡	is	negative,	you	are	looking	at	times	earlier	than	𝑡 = 0	when	the	object	will	
have	been	moving	more	slowly	than	𝑣..	This	makes	sense,	because	acceleration	∙	
time	will	be	negative	(+	∙	–	=	–),	so	you	will	be	adding	a	negative	value	to	𝑣..	
	

(2) 𝑣.	is	negative	and	𝑎	is	positive.	
When	𝑣.	and	𝑎	have	opposite	signs,	the	object	is	slowing	down.	In	this	case,	the	
object	is	moving	left	and	accelerating	to	the	right.	In	other	words,	at	𝑡 = 0,	the	
object	begins	with	a	leftward	speed	𝑣. 	but	is	slowing	down.	If	the	motion	
continues	long	enough,	the	object	will	eventually	stop	and	begin	moving	to	the	
right.	The	change	in	direction	occurs	when		 𝑎 ∙ 𝑡 > 𝑣. .	
	
If	𝑡	is	negative,	you	are	looking	at	times	earlier	than	𝑡 = 0	when	the	object	will	
have	been	moving	faster	than	𝑣..	This	makes	sense,	because	acceleration	∙	time	
will	then	be	negative	(+	∙	–	=	–),	so	you	will	be	adding	a	negative	value	to	the	
negative	value	of	𝑣.,	which	will	make	it	even	more	negative	(representing	faster	
motion	in	the	negative	direction).	
		

(3) 𝑣.	is	positive	and	𝑎	is	negative.	
The	object	is	initially	slowing	down,	because	𝑣.	and	𝑎	have	opposite	signs.	In	this	
case,	the	object	is	moving	right	and	accelerating	to	the	left.	In	other	words,	at	
𝑡 = 0,	the	object	begins	with	a	rightward	speed	𝑣. 	but	is	slowing	down.	If	the	
motion	continues	long	enough,	the	object	will	eventually	stop	and	begin	moving	
to	the	left.	The	change	in	direction	occurs	when	 𝑎 ∙ 𝑡 > 𝑣. .	
	
If	𝑡	is	negative,	you	are	looking	at	times	earlier	than	𝑡 = 0	when	the	object	will	
have	been	moving	faster	than	𝑣..	This	makes	sense,	because	acceleration	∙	time	
will	then	be	positive	(–	∙	–	=	+),	so	you	will	be	adding	a	positive	value	to	the	
positive	value	of	𝑣.,	which	will	make	it	even	more	positive,	representing	faster	
rightward	motion.	
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(4) 𝑣.	and	𝑎	are	both	negative.	
The	object	is	moving	left	and	accelerating	to	the	left.	In	other	words,	at	𝑡 = 0,	
the	object	begins	with	a	leftward	speed	𝑣. 	and	moves	faster	and	faster.	
	
If	𝑡	is	negative,	you	are	looking	at	times	earlier	than	𝑡 = 0	in	which	the	object	
will	have	been	moving	more	slowly	than	𝑣..	This	makes	sense,	because	
acceleration	∙	time	will	then	be	positive	(–	∙	–	=	+),	so	you	will	be	adding	a	
positive	value	to	the	negative	value	of	𝑣.,	making	it	less	negative	(slower	moving	
in	the	leftward	direction).	
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Problem	#8	
	

	
science	(Einstein)	

𝑡' =
𝑡

1 − 𝑣
𝑐

*
	

	
	

	
Directions	

• Try	to	predict	what	the	formula	is	about	and	what	the	variables	mean.	
• Answer	questions	like	the	ones	on	the	Conversation	Starters	page.	
• Ask	and	answer	your	own	questions	about	the	formula.	
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Solutions	for	#8	
	

𝑡' = M

AN O
P

>	 	 	 Einstein’s	time	dilation	formula	

	
Facts	

𝑡:	a	time	interval	
𝑡L:	the	dilated	time	interval	
1:	constant	
𝑣:	velocity	
𝑐:	speed	of	light	

	
This	is	one	of	Einstein’s	special	relativity	formulas.	It	describes	the	way	that	time	
“slows	down”	for	moving	objects.	𝑡	stands	for	a	time	interval	as	measured	by	an	
observer	moving	with	velocity,	𝑣.	𝑡L’	represents	the	same	interval	as	seen	by	a	
stationary	observer	(for	whom	𝑣 = 0).		
	

Sample	units	
time	intervals	(𝑡L	and	𝑡)	 	 years		

Any	unit	of	time	works	as	long	as	it	is	the	same	for	both	𝑡L	and	𝑡.	
	

1	(constant)	 	 	 no	units	
velocity	(𝑣)	 	 	 meters	per	second		
speed	of	light	(𝑐*)		 	 meters	per	second	
	 Again,	any	unit	of	velocity	works	as	long	as	it	is	same	for	both	𝑣	and	𝑐.	
	
Notice	how	the	units	combine:	

When	you	divide	𝑣	by	𝑐,	you	get	an	expression	with	no	units.	This	makes	sense,	
because	you	are	subtracting	it	from	the	constant,	1,	which	has	no	units.	
(Remember	that	the	units	of	quantities	that	you	subtract	must	be	the	same.)	
Therefore,	the	entire	denominator	has	no	units.	And	when	you	divide	the	time	
(𝑡)	by	an	expression	with	no	units,	the	result	still	has	units	of	time.	
	
Although	d

e
	has	no	units,	it	does	have	an	important	meaning.	It	is	a	ratio	that	

represents	the	fraction	of	the	speed	of	light	that	you	are	traveling.	For	instance,	
if	you	are	traveling	at	75%	of	the	speed	of	light,	then	d

e
= 0.75.	As	a	result,	you	

often	do	not	need	to	know	the	values	of	𝑣	and	𝑐	separately.	You	may	simply	
express	your	speed	using	this	ratio.	

	
	

	 *Some	students	may	recognize	the	𝑐	from	Einstein’s	formula,	𝐸 = 𝑚𝑐*.	 	
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Constants	
The	number	1	underneath	the	square	root	is	constant	in	all	situations.	
	
The	speed	of	light	(𝑐)	is	approximately	equal	to	3×10i	m/sec.	Two	of	Einstein’s	
many	great	achievements	were	(1)	to	recognize	that	𝑐	is	in	fact	constant	for	all	
observers	traveling	at	any	speed,	and	(2)	to	explore	the	implications	of	this	fact—
one	of	which	is	the	strange	time	dilation	formula	in	this	problem!	
	

Effects	of	changing	the	values	of	the	variables	
As	you	change	the	velocity,	𝑣	(or	equivalently,	the	ratio	d

e
)	it	alters	the	relationship	

between	𝑡	and	𝑡L	in	a	fairly	complex	way—as	you	can	see	from	the	complicated	
expression	in	the	denominator!	
	
You	can	explore	the	relationship	by	trying	many	values	of	𝑣	(or	d

e
)	and	watching	what	

happens	to	𝑡	and	𝑡L.	To	simplify	the	process,	try	setting	𝑡 = 1.	Then	𝑡L	is	the	factor	
by	which	𝑡	increases.	For	example,	if	𝑡L = 2,	the	time	interval	doubles.	
	

	Zero	values	
If	𝑡 = 0,	then	𝑡L = 0	as	well,	but	this	is	not	very	interesting.	
If	𝑣 = 0,	then	the	denominator	is	equal	to	1	(try	it!),	and	𝑡 = 𝑡L.	In	other	words,	
time-interval	measurements	are	the	same	for	both	observers.	
	

Negative	values	
𝑣	could	be	negative,	but	this	is	not	important,	because	the	direction	of	travel	does	
not	matter.	Since	d

e
	gets	squared	in	the	calculations,	the	result	will	always	be	positive	

anyway!	
	
	𝑡	and	𝑡L	must	always	have	the	same	sign,	+	or	–*,	because	the	denominator	(being	
an	expression	beneath	a								symbol)	is	always	positive.	Encourage	students	to	think	
about	why	this	is	a	good	thing!	First,	make	sure	they	understand	that	𝑡	and	𝑡L	
represent	time	intervals—a	difference	in	time	measurements	between	two	events.	
	
If	𝑡	and	𝑡L	had	opposite	signs,	it	would	mean	that	the	individual	times	measured	by	
each	observer	for	the	two	events	occurred	in	reverse	order.	In	other	words,	the	
observers	would	disagree	about	which	event	happened	first!	This	would	cause	
serious	problems	with	the	idea	of	cause	and	effect.	
	
	
	
	
	
	
*	It	is	natural	to	think	of	them	as	positive	numbers.		 	



©	Jerry	Burkhart	2017	
5280math.com	

	
Extreme	values	

In	all	of	our	everyday	life	experiences,	𝑣	is	extremely	small	(that	is—compared	to	the	
speed	of	light).	In	this	case,	d

e
	is	very	close	to	0,	meaning	that	the	denominator	in	the	

formula	is	very	close	to	1.	Therefore,	𝑡L	is	so	close	to	𝑡	that	it	is	nearly	impossible	for	
us	to	measure	the	difference.	In	other	words,	the	speeds	that	we	encounter	in	our	
daily	lives	are	nowhere	near	large	enough	for	us	to	see	time	appear	to	slow	down.	
	
Example:	Suppose	that	𝑣 = 1000	miles	per	hour.	This	is	about	450	meters	per	
second.	Remembering	that	𝑐	is	approximately	3×10i	meters	per	second:	

𝑣
𝑐 = 450 ÷ 3×10i ≈ 1.5×10Nk = 0.0000015	
𝑣
𝑐

*
≈ 2.25×10NA* = 0.00000000000225	

1 −
𝑣
𝑐

*
≈ 0.999999999998	

	
The	square	root	of	this	number	is	even	closer	to	1!	In	fact,	your	calculator	will	
probably	not	have	enough	precision	to	distinguish	it	from	1.	

	
In	order	to	calculate	𝑡L,	you	must	divide	𝑡	by	this	number,	which,	for	all	practical	
purposes,	amounts	to	dividing	by	1.	The	amount	by	which	time	appears	to	slow	
down	is	difficult	to	calculate	and	too	small	to	measure.	
	
Suppose	that	you	travel	at	the	speed	of	light.	In	other	words,	𝑣 = 𝑐.	Then:	

𝑣
𝑐 = 1	
𝑣
𝑐

*
= 1	

1 −
𝑣
𝑐

*
= 1 − 1 = 0	

0 = 0	
	

The	denominator	in	the	formula	is	equal	to	0,	which	makes	no	mathematical	sense.	
The	formula	appears	to	be	telling	us	that	it	is	not	possible	to	travel	at	the	speed	of	
light!	(The	problem	is	as	bad	or	worse	if	𝑣 > 𝑐.	Try	it!)	
	
What	happens	when	𝑣	becomes	very	close	to	𝑐?	Then	d

e
	becomes	very	close	to	1,	

and	the	denominator	gets	extremely	small.	When	you	divide	𝑡	by	this	number,	you	
get	a	very	large	answer,	meaning	that	𝑡L	is	much	greater	than	𝑡;	that	is,	the	time	
dilation	effect	is	huge.	When	you	are	traveling	near	the	speed	of	light,	tiny	increases	
in	𝑣	eventually	result	in	enormous	increases	in	𝑡L.	This	helps	to	explain	the	problem	
with	having	a	denominator	of	0.	If	𝑣	were	to	reach	the	value	of	𝑐,	the	value	of	𝑡L	
would	essentially	be	infinite.	
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A	graph	
Some	students	may	wonder	what	the	relationship	between	𝑣	and	𝑡L	(or	more	
specifically	d

e
	and	M

l

M
)	looks	like	on	a	graph.	Encourage	them	to	try	graphing	it!	

	

	
	

Notice	that	up	to	half	the	speed	of	light	(d
e
	=	0.5)	and	even	beyond,	the	curve	is	

very	flat,	showing	that	the	time	dilation	effect	is	small.	(Everyday	life	is	right	next	
to	the	𝑦-axis!)	When	you	reach	about	0.95	times	the	speed	of	light,	the	curve	
bends	very	sharply	upwards	and	the	time	dilation	effect	suddenly	becomes	
dramatic.	The	graph	never	touches	the	vertical	d

e
= 1	line,	but	gets	closer	and	

closer.	
	

Additional	observations	
In	truth,	you	cannot	determine	who	is	stationary	and	who	is	moving	in	Einstein’s	
theory.	You	can	only	determine	the	relative	motion	of	the	two	observers.	Since	
either	observer	may	claim	to	be	at	rest,	each	of	them	may	conclude	that	time	
appears	to	be	moving	more	slowly	for	the	other!	This	paradox	takes	a	lot	of	
thought	to	work	out.	Some	students	may	be	interested	in	doing	some	research.	
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The	expression	 1 − d
e

*
	appears	in	many	of	Einstein’s	formulas,	including	

those	related	to	length	and	mass	at	high	velocities.	It	is	not	a	coincidence	that	
the	denominator	looks	suspiciously	like	the	familiar	expression,	 𝑎* + 𝑏*,														
used	in	Pythagorean	theorem	calculations.	The	main	difference	is	between	the	
addition	and	subtraction	in	the	formulas,	which	reflects	the	fact	that	time	
behaves	differently	than	the	familiar	spatial	dimensions.	

	


